CREAT: Census Research Exploration and Analysis Tool

LEHD Infrastructure Files in the Census RDC: Overview of S2004 Snapshot

April 2011

Working Paper Number:

CES-11-13

Abstract

The Longitudinal Employer-Household Dynamics (LEHD) Program at the U.S. Census Bureau, with the support of several national research agencies, has built a set of infrastructure files using administrative data provided by state agencies, enhanced with information from other administrative data sources, demographic and economic (business) surveys and censuses. The LEHD Infrastructure Files provide a detailed and comprehensive picture of workers, employers, and their interaction in the U.S. economy. This document describes the structure and content of the 2004 Snapshot of the LEHD Infrastructure files as they are made available in the Census Bureau's Research Data Center network.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
payroll, data census, census data, survey, employee, employ, employed, labor, longitudinal, job, employment data, workforce, employing, worker, employment dynamics, residential, census file, mobility, employer household, longitudinal employer, research census, employee data, census employment, workforce indicators


Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'LEHD Infrastructure Files in the Census RDC: Overview of S2004 Snapshot' are listed below in order of similarity.