CREAT: Census Research Exploration and Analysis Tool

Distribution Preserving Statistical Disclosure Limitation

September 2006

Working Paper Number:

tp-2006-04

Abstract

One approach to limiting disclosure risk in public-use microdata is to release multiply-imputed, partially synthetic data sets. These are data on actual respondents, but with confidential data replaced by multiply-imputed synthetic values. A mis-specified imputation model can invalidate inferences because the distribution of synthetic data is completely determined by the model used to generate them. We present two practical methods of generating synthetic values when the imputer has only limited information about the true data generating process. One is applicable when the true likelihood is known up to a monotone transformation. The second requires only limited knowledge of the true likelihood, but nevertheless preserves the conditional distribution of the confidential data, up to sampling error, on arbitrary subdomains. Our method maximizes data utility and minimizes incremental disclosure risk up to posterior uncertainty in the imputation model and sampling error in the estimated transformation. We validate the approach with a simulation and application to a large linked employer-employee database.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
analysis, econometric, estimating, data, researcher, statistical, report, microdata, survey, statistical agencies, respondent, research, information, empirical, longitudinal, department, privacy, record, population, census bureau, aging, research census, employee data, statistical disclosure

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Standard Industrial Classification, Service Annual Survey, National Science Foundation, Department of Economics, Cornell University, Unemployment Insurance, Research Data Center, Alfred P Sloan Foundation, Longitudinal Employer Household Dynamics, Cornell Institute for Social and Economic Research, LEHD Program

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Distribution Preserving Statistical Disclosure Limitation' are listed below in order of similarity.