CREAT: Census Research Exploration and Analysis Tool

Recalculating... : How Uncertainty in Local Labor Market Definitions Affects Empirical Findings

January 2017

Working Paper Number:

CES-17-49R

Abstract

This paper evaluates the use of commuting zones as a local labor market definition. We revisit Tolbert and Sizer (1996) and demonstrate the sensitivity of definitions to two features of the methodology: a cluster dissimilarity cutoff, or the count of clusters, and uncertainty in the input data. We show how these features impact empirical estimates using a standard application of commuting zones and an example from related literature. We conclude with advice to researchers on how to demonstrate the robustness of empirical findings to uncertainty in the definition of commuting zones

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
estimating, estimation, empirical, regional, cluster, metropolitan, rural, area, region, geographic, census employment, residence, commute

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Service Annual Survey, Bureau of Economic Analysis, Bureau of Labor, Department of Agriculture, Decennial Census, 1990 Census, Economic Research Service, American Community Survey, Public Use Micro Sample, World Trade Organization

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Recalculating... : How Uncertainty in Local Labor Market Definitions Affects Empirical Findings' are listed below in order of similarity.