CREAT: Census Research Exploration and Analysis Tool

Papers Containing Keywords(s): 'imputation model'

The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
Click here to search again

Frequently Occurring Concepts within this Search

Viewing papers 1 through 7 of 7


  • Working Paper

    Finding Needles in Haystacks: Multiple-Imputation Record Linkage Using Machine Learning

    November 2021

    Working Paper Number:

    CES-21-35

    This paper considers the problem of record linkage between a household-level survey and an establishment-level frame in the absence of unique identifiers. Linkage between frames in this setting is challenging because the distribution of employment across establishments is highly skewed. To address these difficulties, this paper develops a probabilistic record linkage methodology that combines machine learning (ML) with multiple imputation (MI). This ML-MI methodology is applied to link survey respondents in the Health and Retirement Study to their workplaces in the Census Business Register. The linked data reveal new evidence that non-sampling errors in household survey data are correlated with respondents' workplace characteristics.
    View Full Paper PDF
  • Working Paper

    Total Error and Variability Measures with Integrated Disclosure Limitation for Quarterly Workforce Indicators and LEHD Origin Destination Employment Statistics in On The Map

    January 2017

    Working Paper Number:

    CES-17-71

    We report results from the rst comprehensive total quality evaluation of five major indicators in the U.S. Census Bureau's Longitudinal Employer-Household Dynamics (LEHD) Program Quarterly Workforce Indicators (QWI): total employment, beginning-of-quarter employment, full-quarter employment, total payroll, and average monthly earnings of full-quarter employees. Beginning-of-quarter employment is also the main tabulation variable in the LEHD Origin-Destination Employment Statistics (LODES) workplace reports as displayed in OnTheMap (OTM). The evaluation is conducted by generating multiple threads of the edit and imputation models used in the LEHD Infrastructure File System. These threads conform to the Rubin (1987) multiple imputation model, with each thread or implicate being the output of formal probability models that address coverage, edit, and imputation errors. Design-based sampling variability and nite population corrections are also included in the evaluation. We derive special formulas for the Rubin total variability and its components that are consistent with the disclosure avoidance system used for QWI and LODES/OTM workplace reports. These formulas allow us to publish the complete set of detailed total quality measures for QWI and LODES. The analysis reveals that the five publication variables under study are estimated very accurately for tabulations involving at least 10 jobs. Tabulations involving three to nine jobs have quality in the range generally deemed acceptable. Tabulations involving zero, one or two jobs, which are generally suppressed in the QWI and synthesized in LODES, have substantial total variability but their publication in LODES allows the formation of larger custom aggregations, which will in general have the accuracy estimated for tabulations in the QWI based on a similar number of workers.
    View Full Paper PDF
  • Working Paper

    R&D, Attrition and Multiple Imputation in BRDIS

    January 2017

    Working Paper Number:

    CES-17-13

    Multiple imputation in business establishment surveys like BRDIS, an annual business survey in which some companies are sampled every year or multiple years, may enhance the estimates of total R&D in addition to helping researchers estimate models with subpopulations of small sample size. Considering a panel of BRDIS companies throughout the years 2008 to 2013 linked to LBD data, this paper uses the conclusions obtained with missing data visualization and other explorations to come up with a strategy to conduct multiple imputation appropriate to address the item nonresponse in R&D expenditures. Because survey design characteristics are behind much of the item and unit nonresponse, multiple imputation of missing data in BRDIS changes the estimates of total R&D significantly and alters the conclusions reached by models of the determinants of R&D investment obtained with complete case analysis.
    View Full Paper PDF
  • Working Paper

    Simultaneous Edit-Imputation for Continuous Microdata

    December 2015

    Working Paper Number:

    CES-15-44

    Many statistical organizations collect data that are expected to satisfy linear constraints; as examples, component variables should sum to total variables, and ratios of pairs of variables should be bounded by expert-specified constants. When reported data violate constraints, organizations identify and replace values potentially in error in a process known as edit-imputation. To date, most approaches separate the error localization and imputation steps, typically using optimization methods to identify the variables to change followed by hot deck imputation. We present an approach that fully integrates editing and imputation for continuous microdata under linear constraints. Our approach relies on a Bayesian hierarchical model that includes (i) a flexible joint probability model for the underlying true values of the data with support only on the set of values that satisfy all editing constraints, (ii) a model for latent indicators of the variables that are in error, and (iii) a model for the reported responses for variables in error. We illustrate the potential advantages of the Bayesian editing approach over existing approaches using simulation studies. We apply the model to edit faulty data from the 2007 U.S. Census of Manufactures. Supplementary materials for this article are available online.
    View Full Paper PDF
  • Working Paper

    USING IMPUTATION TECHNIQUES TO EVALUATE STOPPING RULES IN ADAPTIVE SURVEY DESIGN

    October 2014

    Working Paper Number:

    CES-14-40

    Adaptive Design methods for social surveys utilize the information from the data as it is collected to make decisions about the sampling design. In some cases, the decision is either to continue or stop the data collection. We evaluate this decision by proposing measures to compare the collected data with follow-up samples. The options are assessed by imputation of the nonrespondents under different missingness scenarios, including Missing Not at Random. The variation in the utility measures is compared to the cost induced by the follow-up sample sizes. We apply the proposed method to the 2007 U.S. Census of Manufacturers.
    View Full Paper PDF
  • Working Paper

    COMPARING METHODS FOR IMPUTING EMPLOYER HEALTH INSURANCE CONTRIBUTIONS IN THE CURRENT POPULATION SURVEY

    August 2013

    Working Paper Number:

    CES-13-41

    The degree to which firms contribute to the payment of workers' health insurance premiums is an important consideration in the measurement of income and for understanding the potential impact of the 2010 Affordable Care Act on employment-based health insurance participation. Currently the U.S. Census Bureau imputes employer contributions in the Annual Social and Economic Supplement of the Current Population Survey based on data from the 1977 National Medical Care Expenditure Survey. The goal of this paper is to assess the extent to which this imputation methodology produces estimates reflective of the current distribution of employer contributions. The paper uses recent contributions data from the Medical Expenditure Panel Survey-Insurance Component to estimate a new model to inform the imputation procedure and to compare the resulting distribution of contributions. These new estimates are compared with those produced under current production methods across employee and employer characteristics.
    View Full Paper PDF
  • Working Paper

    Plant-Level Productivity and Imputation of Missing Data in the Census of Manufactures

    January 2011

    Working Paper Number:

    CES-11-02

    In the U.S. Census of Manufactures, the Census Bureau imputes missing values using a combination of mean imputation, ratio imputation, and conditional mean imputation. It is wellknown that imputations based on these methods can result in underestimation of variability and potential bias in multivariate inferences. We show that this appears to be the case for the existing imputations in the Census of Manufactures. We then present an alternative strategy for handling the missing data based on multiple imputation. Specifically, we impute missing values via sequences of classification and regression trees, which offer a computationally straightforward and flexible approach for semi-automatic, large-scale multiple imputation. We also present an approach to evaluating these imputations based on posterior predictive checks. We use the multiple imputations, and the imputations currently employed by the Census Bureau, to estimate production function parameters and productivity dispersions. The results suggest that the two approaches provide quite different answers about productivity.
    View Full Paper PDF