-
Startup Dynamics: Transitioning from Nonemployer Firms to Employer Firms, Survival, and Job Creation
April 2025
Working Paper Number:
CES-25-26
Understanding the dynamics of startup businesses' growth, exit, and survival is crucial for fostering entrepreneurship. Among the nearly 30 million registered businesses in the United States, fewer than six million have employees beyond the business owners. This research addresses the gap in understanding which companies transition to employer businesses and the mechanisms behind this process. Job creation remains a critical concern for policymakers, researchers, and advocacy groups. This study aims to illuminate the transition from non-employer businesses to employer businesses and explore job creation by new startups. Leveraging newly available microdata from the U.S. Census Bureau, we seek to gain deeper insights into firm survival, job creation by startups, and the transition from non-employer to employer status.
View Full
Paper PDF
-
Garage Entrepreneurs or just Self-Employed? An Investigation into Nonemployer Entrepreneurship
October 2024
Working Paper Number:
CES-24-61
Nonemployers, businesses without employees, account for most businesses in the U.S. yet are poorly understood. We use restricted administrative and survey data to describe nonemployer dynamics, overall performance, and performance by demographic group. We find that eventual outcome ' migration to employer status, continuing as a nonemployer, or exit ' is closely related to receipt growth. We provide estimates of employment creation by firms that began as nonemployers and become employers (migrants), estimating that relative to all firms born in 1996, nonemployer migrants accounted for 3-17% of all net jobs in the seventh year after startup. Moreover, we find that migrants' employment creation declined by 54% for the cohorts born between 1996 to 2014. Our results are consistent with increased adjustment frictions in recent periods, and suggest accessibility to transformative entrepreneurship for everyday Americans has declined.
View Full
Paper PDF
-
After the Storm: How Emergency Liquidity Helps Small Businesses Following Natural Disasters
April 2024
Working Paper Number:
CES-24-20
Does emergency credit prevent long-term financial distress? We study the causal effects of government-provided recovery loans to small businesses following natural disasters. The rapid financial injection might enable viable firms to survive and grow or might hobble precarious firms with more risk and interest obligations. We show that the loans reduce exit and bankruptcy, increase employment and revenue, unlock private credit, and reduce delinquency. These effects, especially the crowding-in of private credit, appear to reflect resolving uncertainty about repair. We do not find capital reallocation away from neighboring firms and see some evidence of positive spillovers on local entry.
View Full
Paper PDF
-
Scientific Talent Leaks Out of Funding Gaps
February 2024
Working Paper Number:
CES-24-08
We study how delays in NIH grant funding affect the career outcomes of research personnel. Using comprehensive earnings and tax records linked to university transaction data along with a difference-in-differences design, we find that a funding interruption of more than 30 days has a substantial effect on job placements for personnel who work in labs with a single NIH R01 research grant, including a 3 percentage point (40%) increase in the probability of not working in the US. Incorporating information from the full 2020 Decennial Census and data on publications, we find that about half of those induced into nonemployment appear to permanently leave the US and are 90% less likely to publish in a given year, with even larger impacts for trainees (postdocs and graduate students). Among personnel who continue to work in the US, we find that interrupted personnel earn 20% less than their continuously-funded peers, with the largest declines concentrated among trainees and other non-faculty personnel (such as staff and undergraduates). Overall, funding delays account for about 5% of US nonemployment in our data, indicating that they have a meaningful effect on the scientific labor force at the national level.
View Full
Paper PDF
-
A Note on the Locational Determinants of the Agricultural Supply Chain
July 2021
Working Paper Number:
CES-21-16
Over the past several decades, an increasing share of the agricultural supply chain is located beyond the farmgate, implying that some set of economic factors are influencing the location decisions of food and agricultural establishments. We explore the location decisions of several food and agricultural industries for employer and non-employer establishments by expanding on the empirical implications of Carpenter et al. (2021)'s demand threshold models. While Carpenter et al. (2021) focus on methods to estimate these industries' demand thresholds using restricted access data, we focus on expanding the interpretations of their empirical research and explore additional industries along the agricultural supply chain using their refined methods. Results highlight the influential role of the Land Grant University system for specific establishment types, the importance of diverse industries within local economies, and the changing rurality of the agricultural supply chain.
View Full
Paper PDF
-
Business Dynamics on American Indian Reservations: Evidence from Longitudinal Datasets
November 2020
Working Paper Number:
CES-20-38
We use confidential US Census Bureau data to analyze the difference in business establishment dynamics by geographic location on or off of American Indian reservations over the period of the Great Recession, and subsequent recovery (2007-2016). We geocoded U.S. Census Bureau's Longitudinal Business Database, a dataset with records of all employer business establishments in the U.S. for location in an American Indian Reservation and used it to examine whether there are differences in business establishment survival rates over time by virtue of their location. We find that business establishments located on American Indian reservations have higher survival rates than establishments located in comparable counties. These results are particularly strong for the education, arts and entertainment, wholesale and retail, and public administration industries. While we are not fully able to explain this result, it is consistent with the business establishments being positively selected with respect to survival given the large obstacles necessary to start a business on a reservation in the first place. Alternatively, there may be certain safeguards in a reservation economy that protect business establishments from external economic shocks.
View Full
Paper PDF
-
Matching State Business Registration Records
to Census Business Data
January 2020
Working Paper Number:
CES-20-03
We describe our methodology and results from matching state Business Registration Records (BRR) to Census business data. We use data from Massachusetts and California to develop methods and preliminary results that could be used to guide matching data for additional states. We obtain matches to Census business records for 45% of the Massachusetts BRR records and 40% of the California BRR records. We find higher match rates for incorporated businesses and businesses with higher startup-quality scores as assigned in Guzman and Stern (2018). Clerical reviews show that using relatively strict matching on address is important for match accuracy, while results are less sensitive to name matching strictness. Among matched BRR records, the modal timing of the first match to the BR is in the year in which the BRR record was filed. We use two sets of software to identify matches: SAS DQ Match and a machine-learning algorithm described in Cuffe and Goldschlag (2018). We find preliminary evidence that while the ML-based method yields more match results, SAS DQ tends to result in higher accuracy rates. To conclude, we provide suggestions on how to proceed with matching other states' data in light of our findings using these two states.
View Full
Paper PDF
-
Nonemployer Statistics by Demographics (NES-D): Using Administrative and Census Records Data in Business Statistics
January 2019
Working Paper Number:
CES-19-01
The quinquennial Survey of Business Owners or SBO provided the only comprehensive source of information in the United States on employer and nonemployer businesses by the sex, race, ethnicity and veteran status of the business owners. The annual Nonemployer Statistics series (NES) provides establishment counts and receipts for nonemployers but contains no demographic information on the business owners. With the transition of the employer component of the SBO to the Annual Business Survey, the Nonemployer Statistics by Demographics series or NES-D represents the continuation of demographics estimates for nonemployer businesses. NES-D will leverage existing administrative and census records to assign demographic characteristics to the universe of approximately 24 million nonemployer businesses (as of 2015). Demographic characteristics include key demographics measured by the SBO (sex, race, Hispanic origin and veteran status) as well as other demographics (age, place of birth and citizenship status) collected but not imputed by the SBO if missing. A spectrum of administrative and census data sources will provide the nonemployer universe and demographics information. Specifically, the nonemployer universe originates in the Business Register; the Census Numident will provide sex, age, place of birth and citizenship status; race and Hispanic origin information will be obtained from multiple years of the decennial census and the American Community Survey; and the Department of Veteran Affairs will provide administrative records data on veteran status.
The use of blended data in this manner will make possible the production of NES-D, an annual series that will become the only source of detailed and comprehensive statistics on the scope, nature and activities of U.S. businesses with no paid employment by the demographic characteristics of the business owner. Using the 2015 vintage of nonemployers, initial results indicate that demographic information is available for the overwhelming majority of the universe of nonemployers. For instance, information on sex, age, place of birth and citizenship status is available for over 95 percent of the 24 million nonemployers while race and Hispanic origin are available for about 90 percent of them. These results exclude owners of C-corporations, which represent only 2 percent of nonemployer firms. Among other things, future work will entail imputation of missing demographics information (including that of C-corporations), testing the longitudinal consistency of the estimates, and expanding the set of characteristics beyond the demographics mentioned above. Without added respondent burden and at lower imputation rates and costs, NES-D will meet the needs of stakeholders as well as the economy as a whole by providing reliable estimates at a higher frequency (annual vs. every 5 years) and with a more timely dissemination schedule than the SBO.
View Full
Paper PDF
-
Reservation Nonemployer and Employer Establishments: Data from U.S. Census Longitudinal Business Databases
December 2018
Working Paper Number:
CES-18-50
The presence of businesses on American Indian reservations has been difficult to analyze due to limited data. Akee, Mykerezi, and Todd (AMT; 2017) geocoded confidential data from the U.S. Census Longitudinal Business Database to identify whether employer establishments were located on or off American Indian reservations and then compared federally recognized reservations and nearby county areas with respect to their per capita number of employers and jobs. We use their methods and the U.S. Census Integrated Longitudinal Business Database to develop parallel results for nonemployer establishments and for the combination of employer and nonemployer establishments. Similar to AMT's findings, we find that reservations and nearby county areas have a similar sectoral distribution of nonemployer and nonemployer-plus-employer establishments, but reservations have significantly fewer of them in nearly all sectors, especially when the area population is below 15,000. By contrast to AMT, the average size of reservation nonemployer establishments, as measured by revenue (instead of the jobs measure AMT used for employers), is smaller than the size of nonemployers in nearby county areas, and this is true in most industries as well. The most significant exception is in the retail sector. Geographic and demographic factors, such as population density and per capita income, statistically account for only a small portion of these differences. However, when we assume that nonemployer establishments create the equivalent of one job and use combined employer-plus-nonemployer jobs to measure establishment size, the employer job numbers dominate and we parallel AMT's finding that, due to large job counts in the Arts/Entertainment/Recreation and Public Administration sectors, reservations on average have slightly more jobs per resident than nearby county areas.
View Full
Paper PDF
-
Occupational Classifications: A Machine Learning Approach
August 2018
Working Paper Number:
CES-18-37
Characterizing the work that people do on their jobs is a longstanding and core issue in labor economics. Traditionally, classification has been done manually. If it were possible to combine new computational tools and administrative wage records to generate an automated crosswalk between job titles and occupations, millions of dollars could be saved in labor costs, data processing could be sped up, data could become more consistent, and it might be possible to generate, without a lag, current information about the changing occupational composition of the labor market. This paper examines the potential to assign occupations to job titles contained in administrative data using automated, machine-learning approaches. We use a new extraordinarily rich and detailed set of data on transactional HR records of large firms (universities) in a relatively narrowly defined industry (public institutions of higher education) to identify the potential for machine-learning approaches to classify occupations.
View Full
Paper PDF