CREAT: Census Research Exploration and Analysis Tool

Improving Patent Assignee-Firm Bridge with Web Search Results

August 2022

Working Paper Number:

CES-22-31

Abstract

This paper constructs a patent assignee-firm longitudinal bridge between U.S. patent assignees and firms using firm-level administrative data from the U.S. Census Bureau. We match granted patents applied between 1976 and 2016 to the U.S. firms recorded in the Longitudinal Business Database (LBD) in the Census Bureau. Building on existing algorithms in the literature, we first use the assignee name, address (state and city), and year information to link the two datasets. We then introduce a novel search-aided algorithm that significantly improves the matching results by 7% and 2.9% at the patent and the assignee level, respectively. Overall, we are able to match 88.2% and 80.1% of all U.S. patents and assignees respectively. We contribute to the existing literature by 1) improving the match rates and quality with the web search-aided algorithm, and 2) providing the longest and longitudinally consistent crosswalk between patent assignees and LBD firms.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
researcher, organizational, acquisition, innovation, inventory, patent, patenting, trademark, matching, associate, datasets, firms patents, patents firms, identifier

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Service Annual Survey, Company Organization Survey, University of Maryland, IBM, Longitudinal Business Database, Chicago Census Research Data Center, Economic Census, Research Data Center, Patent and Trademark Office, Longitudinal Employer Household Dynamics, Business Register, Census Bureau Disclosure Review Board, Disclosure Review Board, Federal Statistical Research Data Center

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Improving Patent Assignee-Firm Bridge with Web Search Results' are listed below in order of similarity.