CREAT: Census Research Exploration and Analysis Tool

Reservation Nonemployer and Employer Establishments: Data from U.S. Census Longitudinal Business Databases

December 2018

Working Paper Number:

CES-18-50

Abstract

The presence of businesses on American Indian reservations has been difficult to analyze due to limited data. Akee, Mykerezi, and Todd (AMT; 2017) geocoded confidential data from the U.S. Census Longitudinal Business Database to identify whether employer establishments were located on or off American Indian reservations and then compared federally recognized reservations and nearby county areas with respect to their per capita number of employers and jobs. We use their methods and the U.S. Census Integrated Longitudinal Business Database to develop parallel results for nonemployer establishments and for the combination of employer and nonemployer establishments. Similar to AMT's findings, we find that reservations and nearby county areas have a similar sectoral distribution of nonemployer and nonemployer-plus-employer establishments, but reservations have significantly fewer of them in nearly all sectors, especially when the area population is below 15,000. By contrast to AMT, the average size of reservation nonemployer establishments, as measured by revenue (instead of the jobs measure AMT used for employers), is smaller than the size of nonemployers in nearby county areas, and this is true in most industries as well. The most significant exception is in the retail sector. Geographic and demographic factors, such as population density and per capita income, statistically account for only a small portion of these differences. However, when we assume that nonemployer establishments create the equivalent of one job and use combined employer-plus-nonemployer jobs to measure establishment size, the employer job numbers dominate and we parallel AMT's finding that, due to large job counts in the Arts/Entertainment/Recreation and Public Administration sectors, reservations on average have slightly more jobs per resident than nearby county areas.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
data census, employee, proprietorship, entrepreneurship, sector, establishment, agriculture, rural, warehousing, farm, population, indian, geography, use census, geographic, nonemployer businesses

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Service Annual Survey, Federal Reserve Bank, Longitudinal Business Database, Federal Reserve System, Retail Trade, Department of Agriculture, Wholesale Trade, Geographic Information Systems, Educational Services, North American Industry Classification System, American Community Survey, Technical Services, Public Administration, Integrated Longitudinal Business Database, Arts, Entertainment, Accommodation and Food Services, Agriculture, Forestry, Health Care and Social Assistance

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Reservation Nonemployer and Employer Establishments: Data from U.S. Census Longitudinal Business Databases' are listed below in order of similarity.