Characterizing the work that people do on their jobs is a longstanding and core issue in labor economics. Traditionally, classification has been done manually. If it were possible to combine new computational tools and administrative wage records to generate an automated crosswalk between job titles and occupations, millions of dollars could be saved in labor costs, data processing could be sped up, data could become more consistent, and it might be possible to generate, without a lag, current information about the changing occupational composition of the labor market. This paper examines the potential to assign occupations to job titles contained in administrative data using automated, machine-learning approaches. We use a new extraordinarily rich and detailed set of data on transactional HR records of large firms (universities) in a relatively narrowly defined industry (public institutions of higher education) to identify the potential for machine-learning approaches to classify occupations.
-
A Task-based Approach to Constructing Occupational Categories
with Implications for Empirical Research in Labor Economics
September 2019
Working Paper Number:
CES-19-27
Most applied research in labor economics that examines returns to worker skills or differences in earnings across subgroups of workers typically accounts for the role of occupations by controlling for occupational categories. Researchers often aggregate detailed occupations into categories based on the Standard Occupation Classification (SOC) coding scheme, which is based largely on narratives or qualitative measures of workers' tasks. Alternatively, we propose two quantitative task-based approaches to constructing occupational categories by using factor analysis with O*NET job descriptors that provide a rich set of continuous measures of job tasks across all occupations. We find that our task-based approach outperforms the SOC-based approach in terms of lower occupation distance measures. We show that our task-based approach provides an intuitive, nuanced interpretation for grouping occupations and permits quantitative assessments of similarities in task compositions across occupations. We also replicate a recent analysis and find that our task-based occupational categories explain more of the gender wage gap than the SOC-based approaches explain. Our study enhances the Federal Statistical System's understanding of the SOC codes, investigates ways to use third-party data to construct useful research variables that can potentially be added to Census Bureau data products to improve their quality and versatility, and sheds light on how the use of alternative occupational categories in economics research may lead to different empirical results and deeper understanding in the analysis of labor market outcomes.
View Full
Paper PDF
-
Squeezing More Out of Your Data: Business Record Linkage with Python
November 2018
Working Paper Number:
CES-18-46
Integrating data from different sources has become a fundamental component of modern data analytics. Record linkage methods represent an important class of tools for accomplishing such integration. In the absence of common disambiguated identifiers, researchers often must resort to ''fuzzy" matching, which allows imprecision in the characteristics used to identify common entities across dfferent datasets. While the record linkage literature has identified numerous individually useful fuzzy matching techniques, there is little consensus on a way to integrate those techniques within a
single framework. To this end, we introduce the Multiple Algorithm Matching for Better Analytics (MAMBA), an easy-to-use, flexible, scalable, and transparent software platform for business record linkage applications using Census microdata. MAMBA leverages multiple string comparators to assess the similarity of records using a machine learning algorithm to disambiguate matches. This software represents a transparent tool for researchers seeking to link external business data to the Census Business Register files.
View Full
Paper PDF
-
NOISE INFUSION AS A CONFIDENTIALITY PROTECTION MEASURE FOR GRAPH-BASED STATISTICS
September 2014
Working Paper Number:
CES-14-30
We use the bipartite graph representation of longitudinally linked em-ployer-employee data, and the associated projections onto the employer and em-ployee nodes, respectively, to characterize the set of potential statistical summar-ies that the trusted custodian might produce. We consider noise infusion as the primary confidentiality protection method. We show that a relatively straightfor-ward extension of the dynamic noise-infusion method used in the U.S. Census Bureau's Quarterly Workforce Indicators can be adapted to provide the same confidentiality guarantees for the graph-based statistics: all inputs have been modified by a minimum percentage deviation (i.e., no actual respondent data are used) and, as the number of entities contributing to a particular statistic increases, the accuracy of that statistic approaches the unprotected value. Our method also ensures that the protected statistics will be identical in all releases based on the same inputs.
View Full
Paper PDF
-
Work Organization and Cumulative Advantage
March 2025
Working Paper Number:
CES-25-18
Over decades of wage stagnation, researchers have argued that reorganizing work can boost pay for disadvantaged workers. But upgrading jobs could inadvertently shift hiring away from those workers, exacerbating their disadvantage. We theorize how work organization affects cumulative advantage in the labor market, or the extent to which high-paying positions are increasingly allocated to already-advantaged workers. Specifically, raising technical skill demands exacerbates cumulative advantage by shifting hiring towards higher-skilled applicants. In contrast, when employers increase autonomy or skills learned on-the-job, they raise wages to buy worker consent or commitment, rather than pre-existing skill. To test this idea, we match administrative earnings to task descriptions from job posts. We compare earnings for workers hired into the same occupation and firm, but under different task allocations. When employers raise complexity and autonomy, new hires' starting earnings increase and grow faster. However, while the earnings boost from complex, technical tasks shifts employment toward workers with higher prior earnings, worker selection changes less for tasks learned on-the-job and very little for high autonomy tasks. These results demonstrate how reorganizing work can interrupt cumulative advantage.
View Full
Paper PDF
-
Occupation Inflation in the Current Population Survey
September 2012
Working Paper Number:
CES-12-26
A common caveat often accompanying results relying on household surveys regards respondent error. There is research using independent, presumably error-free administrative data, to estimate the extent of error in the data, the correlates of error, and potential corrections for the error. We investigate measurement error in occupation in the Current Population Survey (CPS) using the panel component of the CPS to identify those that incorrectly report changing occupation. We find evidence that individuals are inflating their occupation to higher skilled and higher paying occupations than the ones they actually perform. Occupation inflation biases the education and race coefficients in standard Mincer equation results within occupations.
View Full
Paper PDF
-
Further Evidence from Census 2000 About Earnings by Detailed Occupation for Men and Women: The Role of Race and Hispanic Origin
November 2011
Working Paper Number:
CES-11-37
A 2004 report by the author reviewed data from Census 2000 and concluded "There is a substantial gap in median earnings between men and women that is unexplained, even after controlling for work experience (to the extent it can be represented by age and presence of children), education, and occupation." This paper extends the analysis and concludes that once those characteristics are controlled for, no further explanatory power is attributable to race or Hispanic origin.
View Full
Paper PDF
-
Effects of a Government-Academic Partnership: Has the NSF-Census Bureau Research Network Helped Improve the U.S. Statistical System?
January 2017
Authors:
Lars Vilhuber,
John M. Abowd,
Daniel Weinberg,
Jerome P. Reiter,
Matthew D. Shapiro,
Robert F. Belli,
Noel Cressie,
David C. Folch,
Scott H. Holan,
Margaret C. Levenstein,
Kristen M. Olson,
Jolene Smyth,
Leen-Kiat Soh,
Bruce D. Spencer,
Seth E. Spielman,
Christopher K. Wikle
Working Paper Number:
CES-17-59R
The National Science Foundation-Census Bureau Research Network (NCRN) was established in 2011 to create interdisciplinary research nodes on methodological questions of interest and significance to the broader research community and to the Federal Statistical System (FSS), particularly the Census Bureau. The activities to date have covered both fundamental and applied statistical research and have focused at least in part on the training of current and future generations of researchers in skills of relevance to surveys and alternative measurement of economic units, households, and persons. This paper discusses some of the key research findings of the eight nodes, organized into six topics: (1) Improving census and survey data collection methods; (2) Using alternative sources of data; (3) Protecting privacy and confidentiality by improving disclosure avoidance; (4) Using spatial and spatio-temporal statistical modeling to improve estimates; (5) Assessing data cost and quality tradeoffs; and (6) Combining information from multiple sources. It also reports on collaborations across nodes and with federal agencies, new software developed, and educational activities and outcomes. The paper concludes with an evaluation of the ability of the FSS to apply the NCRN's research outcomes and suggests some next steps, as well as the implications of this research-network model for future federal government renewal initiatives.
View Full
Paper PDF
-
A Tale of Two Fields? STEM Career Outcomes
October 2023
Working Paper Number:
CES-23-53
Is the labor market for US researchers experiencing the best or worst of times? This paper analyzes the market for recently minted Ph.D. recipients using supply-and-demand logic and data linking graduate students to their dissertations and W2 tax records. We also construct a new dissertation-industry 'relevance' measure, comparing dissertation and patent text and linking patents to assignee firms and industries. We find large disparities across research fields in placement (faculty, postdoc, and industry positions), earnings, and the use of specialized human capital. Thus, it appears to simultaneously be a good time for some fields and a bad time for others.
View Full
Paper PDF
-
The Design of Sampling Strata for the National Household Food Acquisition and Purchase Survey
February 2025
Working Paper Number:
CES-25-13
The National Household Food Acquisition and Purchase Survey (FoodAPS), sponsored by the United States Department of Agriculture's (USDA) Economic Research Service (ERS) and Food and Nutrition Service (FNS), examines the food purchasing behavior of various subgroups of the U.S. population. These subgroups include participants in the Supplemental Nutrition Assistance Program (SNAP) and the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC), as well as households who are eligible for but don't participate in these programs. Participants in these social protection programs constitute small proportions of the U.S. population; obtaining an adequate number of such participants in a survey would be challenging absent stratified sampling to target SNAP and WIC participating households. This document describes how the U.S. Census Bureau (which is planning to conduct future versions of the FoodAPS survey on behalf of USDA) created sampling strata to flag the FoodAPS targeted subpopulations using machine learning applications in linked survey and administrative data. We describe the data, modeling techniques, and how well the sampling flags target low-income households and households receiving WIC and SNAP benefits. We additionally situate these efforts in the nascent literature on the use of big data and machine learning for the improvement of survey efficiency.
View Full
Paper PDF
-
The impact of manufacturing credentials on earnings and the probability of employment
May 2022
Working Paper Number:
CES-22-15
This paper examines the labor market returns to earning industry-certified credentials in the manufacturing sector. Specifically, we are interested in estimating the impact of a manufacturing credential on wages, probability of employment, and probability of employment specifically in the manufacturing sector post credential attainment. We link students who earned manufacturing credentials to their enrollment and completion records, and then further link them to their IRS tax records for earnings and employment (Form W2 and 1040) and to the American Community Survey and decennial census for demographic information. We present earnings trajectories for workers with credentials by type of credential, industry of employment, age, race and ethnicity, gender, and state. To obtain a more causal estimate of the impact of a credential on earnings, we implement a coarsened exact matching strategy to compare outcomes between otherwise similar people with and without a manufacturing credential. We find that the attainment of a manufacturing industry credential is associated with higher earnings and a higher likelihood of labor market participation when we compare attainers to a group of non-attainers who are otherwise similar.
View Full
Paper PDF