The National Science Foundation-Census Bureau Research Network (NCRN) was established in 2011 to create interdisciplinary research nodes on methodological questions of interest and significance to the broader research community and to the Federal Statistical System (FSS), particularly the Census Bureau. The activities to date have covered both fundamental and applied statistical research and have focused at least in part on the training of current and future generations of researchers in skills of relevance to surveys and alternative measurement of economic units, households, and persons. This paper discusses some of the key research findings of the eight nodes, organized into six topics: (1) Improving census and survey data collection methods; (2) Using alternative sources of data; (3) Protecting privacy and confidentiality by improving disclosure avoidance; (4) Using spatial and spatio-temporal statistical modeling to improve estimates; (5) Assessing data cost and quality tradeoffs; and (6) Combining information from multiple sources. It also reports on collaborations across nodes and with federal agencies, new software developed, and educational activities and outcomes. The paper concludes with an evaluation of the ability of the FSS to apply the NCRN's research outcomes and suggests some next steps, as well as the implications of this research-network model for future federal government renewal initiatives.
-
Some Open Questions on Multiple-Source Extensions of Adaptive-Survey Design Concepts and Methods
February 2023
Working Paper Number:
CES-23-03
Adaptive survey design is a framework for making data-driven decisions about survey data collection operations. This paper discusses open questions related to the extension of adaptive principles and capabilities when capturing data from multiple data sources. Here, the concept of 'design' encompasses the focused allocation of resources required for the production of high-quality statistical information in a sustainable and cost-effective way. This conceptual framework leads to a discussion of six groups of issues including: (i) the goals for improvement through adaptation; (ii) the design features that are available for adaptation; (iii) the auxiliary data that may be available for informing adaptation; (iv) the decision rules that could guide adaptation; (v) the necessary systems to operationalize adaptation; and (vi) the quality, cost, and risk profiles of the proposed adaptations (and how to evaluate them). A multiple data source environment creates significant opportunities, but also introduces complexities that are a challenge in the production of high-quality statistical information.
View Full
Paper PDF
-
Access Methods for United States Microdata
August 2007
Working Paper Number:
CES-07-25
Beyond the traditional methods of tabulations and public-use microdata samples, statistical agencies have developed four key alternatives for providing non-government researchers with access to confidential microdata to improve statistical modeling. The first, licensing, allows qualified researchers access to confidential microdata at their own facilities, provided certain security requirements are met. The second, statistical data enclaves, offer qualified researchers restricted access to confidential economic and demographic data at specific agency-controlled locations. Third, statistical agencies can offer remote access, through a computer interface, to the confidential data under automated or manual controls. Fourth, synthetic data developed from the original data but retaining the correlations in the original data have the potential for allowing a wide range of analyses.
View Full
Paper PDF
-
Why the Economics Profession Must Actively Participate in the Privacy Protection Debate
March 2019
Working Paper Number:
CES-19-09
When Google or the U.S. Census Bureau publish detailed statistics on browsing habits or neighborhood characteristics, some privacy is lost for everybody while supplying public information. To date, economists have not focused on the privacy loss inherent in data publication. In their stead, these issues have been advanced almost exclusively by computer scientists who are primarily interested in technical problems associated with protecting privacy. Economists should join the discussion, first, to determine where to balance privacy protection against data quality; a social choice problem. Furthermore, economists must ensure new privacy models preserve the validity of public data for economic research.
View Full
Paper PDF
-
EXPANDING THE ROLE OF SYNTHETIC DATA AT THE U.S. CENSUS BUREAU
February 2014
Working Paper Number:
CES-14-10
National Statistical offices (NSOs) create official statistics from data collected from survey respondents, government administrative records and other sources. The raw source data is usually considered to be confidential. In the case of the U.S. Census Bureau, confidentiality of survey and administrative records microdata is mandated by statute, and this mandate to protect confidentiality is often at odds with the needs of users to extract as much information from the data as possible. Traditional disclosure protection techniques result in official data products that do not fully utilize the information content of the underlying microdata. Typically, these products take the form of simple aggregate tabulations. In a few cases anonymized public- use micro samples are made available, but these face a growing risk of re-identification by the increasing amounts of information about individuals and firms available in the public domain. One approach for overcoming these risks is to release products based on synthetic data where values are simulated from statistical models designed to mimic the (joint) distributions of the underlying microdata. We discuss re- cent Census Bureau work to develop and deploy such products. We discuss the benefits and challenges involved with extending the scope of synthetic data products in official statistics.
View Full
Paper PDF
-
An In-Depth Examination of Requirements for Disclosure Risk Assessment
October 2023
Authors:
Ron Jarmin,
John M. Abowd,
Ian M. Schmutte,
Jerome P. Reiter,
Nathan Goldschlag,
Victoria A. Velkoff,
Michael B. Hawes,
Robert Ashmead,
Ryan Cumings-Menon,
Sallie Ann Keller,
Daniel Kifer,
Philip Leclerc,
Rolando A. RodrÃguez,
Pavel Zhuravlev
Working Paper Number:
CES-23-49
The use of formal privacy to protect the confidentiality of responses in the 2020 Decennial Census of Population and Housing has triggered renewed interest and debate over how to measure the disclosure risks and societal benefits of the published data products. Following long-established precedent in economics and statistics, we argue that any proposal for quantifying disclosure risk should be based on pre-specified, objective criteria. Such criteria should be used to compare methodologies to identify those with the most desirable properties. We illustrate this approach, using simple desiderata, to evaluate the absolute disclosure risk framework, the counterfactual framework underlying differential privacy, and prior-to-posterior comparisons. We conclude that satisfying all the desiderata is impossible, but counterfactual comparisons satisfy the most while absolute disclosure risk satisfies the fewest. Furthermore, we explain that many of the criticisms levied against differential privacy would be levied against any technology that is not equivalent to direct, unrestricted access to confidential data. Thus, more research is needed, but in the near-term, the counterfactual approach appears best-suited for privacy-utility analysis.
View Full
Paper PDF
-
SYNTHETIC DATA FOR SMALL AREA ESTIMATION IN THE AMERICAN COMMUNITY SURVEY
April 2013
Working Paper Number:
CES-13-19
Small area estimates provide a critical source of information used to study local populations. Statistical agencies regularly collect data from small areas but are prevented from releasing detailed geographical identifiers in public-use data sets due to disclosure concerns. Alternative data dissemination methods used in practice include releasing summary/aggregate tables, suppressing detailed geographic information in public-use data sets, and accessing restricted data via Research Data Centers. This research examines an alternative method for disseminating microdata that contains more geographical details than are currently being released in public-use data files. Specifically, the method replaces the observed survey values with imputed, or synthetic, values simulated from a hierarchical Bayesian model. Confidentiality protection is enhanced because no actual values are released. The method is demonstrated using restricted data from the 2005-2009 American Community Survey. The analytic validity of the synthetic data is assessed by comparing small area estimates obtained from the synthetic data with those obtained from the observed data.
View Full
Paper PDF
-
Disclosure Limitation and Confidentiality Protection in Linked Data
January 2018
Working Paper Number:
CES-18-07
Confidentiality protection for linked administrative data is a combination of access modalities and statistical disclosure limitation. We review traditional statistical disclosure limitation methods and newer methods based on synthetic data, input noise infusion and formal privacy. We discuss how these methods are integrated with access modalities by providing three detailed examples. The first example is the linkages in the Health and Retirement Study to Social Security Administration data. The second example is the linkage of the Survey of Income and Program Participation to administrative data from the Internal Revenue Service and the Social Security Administration. The third example is the Longitudinal Employer-Household Dynamics data, which links state unemployment insurance records for workers and firms to a wide variety of censuses and surveys at the U.S. Census Bureau. For examples, we discuss access modalities, disclosure limitation methods, the effectiveness of those methods, and the resulting analytical validity. The final sections discuss recent advances in access modalities for linked administrative data.
View Full
Paper PDF
-
Improving Estimates of Neighborhood Change with Constant Tract Boundaries
May 2022
Working Paper Number:
CES-22-16
Social scientists routinely rely on methods of interpolation to adjust available data to their research needs. This study calls attention to the potential for substantial error in efforts to harmonize data to constant boundaries using standard approaches to areal and population interpolation. We compare estimates from a standard source (the Longitudinal Tract Data Base) to true values calculated by re-aggregating original 2000 census microdata to 2010 tract areas. We then demonstrate an alternative approach that allows the re-aggregated values to be publicly disclosed, using 'differential privacy' (DP) methods to inject random noise to protect confidentiality of the raw data. The DP estimates are considerably more accurate than the interpolated estimates. We also examine conditions under which interpolation is more susceptible to error. This study reveals cause for greater caution in the use of interpolated estimates from any source. Until and unless DP estimates can be publicly disclosed for a wide range of variables and years, research on neighborhood change should routinely examine data for signs of estimation error that may be substantial in a large share of tracts that experienced complex boundary changes.
View Full
Paper PDF
-
Design Comparison of LODES and ACS Commuting Data Products
October 2014
Working Paper Number:
CES-14-38
The Census Bureau produces two complementary data products, the American Community Survey (ACS) commuting and workplace data and the Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Employment Statistics (LODES), which can be used to answer questions about spatial, economic, and demographic questions relating to workplaces and home-to-work flows. The products are complementary in the sense that they measure similar activities but each has important unique characteristics that provide information that the other measure cannot. As a result of questions from data users, the Census Bureau has created this document to highlight the major design differences between these two data products. This report guides users on the relative advantages of each data product for various analyses and helps explain differences that may arise when using the products.2,3
As an overview, these two data products are sourced from different inputs, cover different populations and time periods, are subject to different sets of edits and imputations, are released under different confidentiality protection mechanisms, and are tabulated at different geographic and characteristic levels. As a general rule, the two data products should not be expected to match exactly for arbitrary queries and may differ substantially for some queries.
Within this document, we compare the two data products by the design elements that were deemed most likely to contribute to differences in tabulated data. These elements are: Collection, Coverage, Geographic and Longitudinal Scope, Job Definition and Reference Period, Job and Worker Characteristics, Location Definitions (Workplace and Residence), Completeness of Geographic Information and Edits/Imputations, Geographic Tabulation Levels, Control Totals, Confidentiality Protection and Suppression, and Related
Public-Use Data Products.
An in-depth data analysis'in aggregate or with the microdata'between the two data products will be the subject of a future technical report. The Census Bureau has begun a pilot project to integrate ACS microdata with LEHD administrative data to develop an enhanced frame of employment status, place of work, and commuting. The Census Bureau will publish quality metrics for person match rates, residence and workplace match rates, and commute distance comparisons.
View Full
Paper PDF
-
Measuring the Impact of COVID-19 on Businesses and People: Lessons from the Census Bureau's Experience
January 2021
Working Paper Number:
CES-21-02
We provide an overview of Census Bureau activities to enhance the consistency, timeliness, and relevance of our data products in response to the COVID-19 pandemic. We highlight new data products designed to provide timely and granular information on the pandemic's impact: the Small Business Pulse Survey, weekly Business Formation Statistics, the Household Pulse Survey, and Community Resilience Estimates. We describe pandemic-related content introduced to existing surveys such as the Annual Business Survey and the Current Population Survey. We discuss adaptations to ensure the continuity and consistency of existing data products such as principal economic indicators and the American Community Survey.
View Full
Paper PDF