CREAT: Census Research Exploration and Analysis Tool

Access Methods for United States Microdata

August 2007

Working Paper Number:

CES-07-25

Abstract

Beyond the traditional methods of tabulations and public-use microdata samples, statistical agencies have developed four key alternatives for providing non-government researchers with access to confidential microdata to improve statistical modeling. The first, licensing, allows qualified researchers access to confidential microdata at their own facilities, provided certain security requirements are met. The second, statistical data enclaves, offer qualified researchers restricted access to confidential economic and demographic data at specific agency-controlled locations. Third, statistical agencies can offer remote access, through a computer interface, to the confidential data under automated or manual controls. Fourth, synthetic data developed from the original data but retaining the correlations in the original data have the potential for allowing a wide range of analyses.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
analysis, data, statistical, database, microdata, census research, survey data, survey, statistical agencies, agency, respondent, confidentiality, statistician, censuses surveys, employee data, datasets, income data


Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Access Methods for United States Microdata' are listed below in order of similarity.