CREAT: Census Research Exploration and Analysis Tool

Analytic Use Of Economic Microdata; A Model For Researcher Access With Confidentiality Protection

August 1992

Written by: Robert H Mcguckin

Working Paper Number:

CES-92-08

Abstract

A primary responsibility of the Center for Economic Studies (CES) of the U.S. Bureau of the Census is to facilitate researcher access to confidential economic microdata files. Benefits from this program accrue not only to policy makers--there is a growing awareness of the importance of microdata for analyzing both the descriptive and welfare implications of regulatory and environmental changes--but also and importantly to the statistical agencies themselves. In fact, there is substantial recent literature arguing for the proposition that the largest single improvement that the U.S. statistical system could make is to improve its analytic capabilities. In this paper I briefly discuss these benefits to greater access for analytical work and ways to achieve them. Due to the nature of business data, public use databases and masking technologies are not available as vehicles for releasing useful microdata files. I conclude that a combination of outside and inside research programs, carefully coordinated and integrated is the best model for ensuring that statistical agencies reap the gains from analytic data users. For the United States, at least, this is fortuitous with respect to justifying access since any direct research with confidential data by outsiders must have a "statistical purpose". Until the advent of CES, it was virtually impossible for researchers to work with the economic microdata collected by the various economic censuses. While the CES program is quite large, as it now stands, researchers, or their representatives, must come to the Census Bureau in Washington, D.C. to access the data. The success of the program has led to increasing demands for data access in facilities outside of the Washington, D.C. area. Two options are considered: 1) Establish Census Bureau facilities in various universities or similar nonprofit research facilities and 2) Develop CES regional operations in existing Census Bureau regional offices.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
analysis, market, economist, econometric, macroeconomic, data, researcher, statistical, database, report, microdata, analyst, survey, statistical agencies, study, agency, confidentiality, research, statistician, expenditure, privacy, economic census, policymakers, business data

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
American Economic Association, Standard Statistical Establishment List, American Statistical Association, Longitudinal Research Database, National Science Foundation, Center for Economic Studies, Bureau of Economic Analysis

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Analytic Use Of Economic Microdata; A Model For Researcher Access With Confidentiality Protection' are listed below in order of similarity.