The principle that the statistical system should provide flexibility-- possibilities for generating multiple groupings of data to satisfy multiple objectives--if it is to satisfy users is universally accepted. Yet in practice, this goal has not been achieved. This paper discusses the feasibility of providing flexibility in the statistical system to accommodate multiple uses of the industrial data now primarily examined within the Standard Industrial Classification (SIC) system. In one sense, the question of feasibility is almost trivial. With today's computer technology, vast amounts of data can be manipulated and stored at very low cost. Reconfigurations of the basic data are very inexpensive compared to the cost of collecting the data. Flexibility in the statistical system implies more than the technical ability to regroup data. It requires that the basic data are sufficiently detailed to support user needs and are processed and maintained in a fashion that makes the use of a variety of aggregation rules possible. For this to happen, statistical agencies must recognize the need for high quality microdata and build this into their planning processes. Agencies need to view their missions from a multiple use perspective and move away from use of a primary reporting and collection vehicle. Although the categories used to report data must be flexible, practical considerations dictate that data collection proceed within a fixed classification system. It is simply too expensive for both respondents and statistical agencies to process survey responses in the absence of standardized forms, data entry programs, etc. I argue for a basic classification centered on commodities--products, services, raw materials and labor inputs--as the focus of data collection. The idea is to make the principle variables of interest--the commodities--the vehicle for the collection and processing of the data. For completeness, the basic classification should include labor usage through some form of occupational classification. In most economic surveys at the Census Bureau, the reporting unit and the classified unit have been the establishment. But there is no need for this to be so. The basic principle to be followed in data collection is that the data should be collected in the most efficient way--efficiency being defined jointly in terms of statistical agency collection costs and respondent burdens.
-
The Importance of Establishment Data in Economic Research
August 1993
Working Paper Number:
CES-93-10
The importance and usefulness of establishment microdata for economic research and policy analysis is outlined and contrasted with traditional products of statistical agencies -- aggregate cross-section tabulations. It is argued that statistical agencies must begin to seriously rethink the way they view establishment data products.
View Full
Paper PDF
-
Longitudinal Economic Data At The Census Bureau: A New Database Yields Fresh Insight On Some Old Issues
January 1990
Working Paper Number:
CES-90-01
This paper has two goals. First, it illustrates the importance of panel data with examples taken from research in progress using the U.S. Census Bureau's Longitudinal Research Database ( LRD ). Although the LRD is not the result of a "true" longitudinal survey, it provides both balanced and unbalanced panel data sets for establishments, firms, and lines of business. The second goal is to integrate the results of recent research with the LRD and to draw conclusions about the importance of longitudinal microdata for econometric research and time series analysis. The advantages of panel data arise from both the micro and time series aspects of the observations. This also leads us to consider why panel data are necessary to understand and interpret the time series behavior of aggregate statistics produced in cross-section establishment surveys and censuses. We find that typical homogeneity assumptions are likely to be inappropriate in a wide variety of applications. In particular, the industry in which an establishment is located, the ownership of the establishment, and the existence of the establishment (births and deaths) are endogenous variables that cannot simply be taken as time invariant fixed effects in econometric modeling.
View Full
Paper PDF
-
Analytic Use Of Economic Microdata; A Model For Researcher Access With Confidentiality Protection
August 1992
Working Paper Number:
CES-92-08
A primary responsibility of the Center for Economic Studies (CES) of the U.S. Bureau of the Census is to facilitate researcher access to confidential economic microdata files. Benefits from this program accrue not only to policy makers--there is a growing awareness of the importance of microdata for analyzing both the descriptive and welfare implications of regulatory and environmental changes--but also and importantly to the statistical agencies themselves. In fact, there is substantial recent literature arguing for the proposition that the largest single improvement that the U.S. statistical system could make is to improve its analytic capabilities. In this paper I briefly discuss these benefits to greater access for analytical work and ways to achieve them. Due to the nature of business data, public use databases and masking technologies are not available as vehicles for releasing useful microdata files. I conclude that a combination of outside and inside research programs, carefully coordinated and integrated is the best model for ensuring that statistical agencies reap the gains from analytic data users. For the United States, at least, this is fortuitous with respect to justifying access since any direct research with confidential data by outsiders must have a "statistical purpose". Until the advent of CES, it was virtually impossible for researchers to work with the economic microdata collected by the various economic censuses. While the CES program is quite large, as it now stands, researchers, or their representatives, must come to the Census Bureau in Washington, D.C. to access the data. The success of the program has led to increasing demands for data access in facilities outside of the Washington, D.C. area. Two options are considered: 1) Establish Census Bureau facilities in various universities or similar nonprofit research facilities and 2) Develop CES regional operations in existing Census Bureau regional offices.
View Full
Paper PDF
-
Testing the Advantages of Using Product Level Data to Create Linkages Across Industrial Coding Systems
October 1993
Working Paper Number:
CES-93-14
After the major revision of the U.S. Standard Industrial Classification system (SIC) in the 1987, the problem arose of how to evaluate industrial performance over time. The revision resulted in the creation of new industries, the combination of old industries, and the remixing of other industries to better reflect the present U.S. economy. A method had to be developed to make the old and new sets of industries comparable over time. Ryten (1991) argues for performing the conversion at the "most micro level," the product level. Linking industries should be accomplished by reclassifying product data of each establishment to a standard system, reassigning the primary activity of the establishment, reaggregating the data to the industry level, and then making the desired statistical comparison (Ryten, 1991). This paper discusses linking the data at the very micro, product level, and at the more macro, industry level. The results suggest that with complete product information the product level conversion is preferable for most industries in manufacturing because it recognizes that establishments may switch their primary industry because of the conversion. For some industries, especially those having no substantial changes in SIC codes over time, the conversion at the industry level is fairly accurate. A small group of industries lacks complete product information in 1982 to link the 1982 product codes to the 1987 codes. This results in having to rely on the industry concordance to create a time series of statistics.
View Full
Paper PDF
-
Disclosure Limitation and Confidentiality Protection in Linked Data
January 2018
Working Paper Number:
CES-18-07
Confidentiality protection for linked administrative data is a combination of access modalities and statistical disclosure limitation. We review traditional statistical disclosure limitation methods and newer methods based on synthetic data, input noise infusion and formal privacy. We discuss how these methods are integrated with access modalities by providing three detailed examples. The first example is the linkages in the Health and Retirement Study to Social Security Administration data. The second example is the linkage of the Survey of Income and Program Participation to administrative data from the Internal Revenue Service and the Social Security Administration. The third example is the Longitudinal Employer-Household Dynamics data, which links state unemployment insurance records for workers and firms to a wide variety of censuses and surveys at the U.S. Census Bureau. For examples, we discuss access modalities, disclosure limitation methods, the effectiveness of those methods, and the resulting analytical validity. The final sections discuss recent advances in access modalities for linked administrative data.
View Full
Paper PDF
-
Evidence on IO Technology Assumptions From the Longitudinal Research Database
May 1993
Working Paper Number:
CES-93-08
This paper investigates whether a popular IO technology assumption, the commodity technology model, is appropriate for specific United States manufacturing industries, using data on product composition and use of intermediates by individual plants from the Census Longitudinal Research Database. Extant empirical research has suggested the rejection of this model, owing to the implication of aggregate data that negative inputs are required to make particular goods. The plant-level data explored here suggest that much of the rejection of the commodity technology model from aggregative data was spurious; problematic entries in industry-level IO tables generally have a very low Census content. However, among the other industries for which Census data on specified materials use is available, there is a sound statistical basis for rejecting the commodity technology model in about one-third of the cases: a novel econometric test demonstrates a fundamental heterogeneity of materials use among plants that only produce the primary products of the industry.
View Full
Paper PDF
-
Unlocking the Information in Integrated Social Data
May 2002
Working Paper Number:
tp-2002-21
View Full
Paper PDF
-
Access Methods for United States Microdata
August 2007
Working Paper Number:
CES-07-25
Beyond the traditional methods of tabulations and public-use microdata samples, statistical agencies have developed four key alternatives for providing non-government researchers with access to confidential microdata to improve statistical modeling. The first, licensing, allows qualified researchers access to confidential microdata at their own facilities, provided certain security requirements are met. The second, statistical data enclaves, offer qualified researchers restricted access to confidential economic and demographic data at specific agency-controlled locations. Third, statistical agencies can offer remote access, through a computer interface, to the confidential data under automated or manual controls. Fourth, synthetic data developed from the original data but retaining the correlations in the original data have the potential for allowing a wide range of analyses.
View Full
Paper PDF
-
Exploring New Ways to Classify Industries for Energy Analysis and Modeling
November 2022
Working Paper Number:
CES-22-49
Combustion, other emitting processes and fossil energy use outside the power sector have become urgent concerns given the United States' commitment to achieving net-zero greenhouse gas emissions by 2050. Industry is an important end user of energy and relies on fossil fuels used directly for process heating and as feedstocks for a diverse range of applications. Fuel and energy use by industry is heterogeneous, meaning even a single product group can vary broadly in its production routes and associated energy use. In the United States, the North American Industry Classification System (NAICS) serves as the standard for statistical data collection and reporting. In turn, data based on NAICS are the foundation of most United States energy modeling. Thus, the effectiveness of NAICS at representing energy use is a limiting condition for current
expansive planning to improve energy efficiency and alternatives to fossil fuels in industry. Facility-level data could be used to build more detail into heterogeneous sectors and thus supplement data from Bureau of the Census and U.S Energy Information Administration reporting at NAICS code levels but are scarce. This work explores alternative classification schemes for industry based on energy use characteristics and validates an approach to estimate facility-level energy use from publicly available greenhouse gas emissions data from the U.S. Environmental Protection Agency (EPA). The approaches in this study can facilitate understanding of current, as well as possible future, energy demand.
First, current approaches to the construction of industrial taxonomies are summarized along with their usefulness for industrial energy modeling. Unsupervised machine learning techniques are then used to detect clusters in data reported from the U.S. Department of Energy's Industrial Assessment Center program. Clusters of Industrial Assessment Center data show similar levels of correlation between energy use and explanatory variables as three-digit NAICS codes. Interestingly, the clusters each include a large cross section of NAICS codes, which lends additional support to the idea that NAICS may not be particularly suited for correlation between energy use and the variables studied. Fewer clusters are needed for the same level of correlation as shown in NAICS codes. Initial assessment shows a reasonable level of separation using support vector machines with higher than 80% accuracy, so machine learning approaches may be promising for further analysis. The IAC data is focused on smaller and medium-sized facilities and is biased toward higher energy users for a given facility type. Cladistics, an approach for classification developed in biology, is adapted to energy and process characteristics of industries. Cladistics applied to industrial systems seeks to understand the progression of organizations and technology as a type of evolution, wherein traits are inherited from previous systems but evolve due to the emergence of inventions and variations and a selection process driven by adaptation to pressures and favorable outcomes. A cladogram is presented for evolutionary directions in the iron and steel sector. Cladograms are a promising tool for constructing scenarios and summarizing directions of sectoral innovation.
The cladogram of iron and steel is based on the drivers of energy use in the sector. Phylogenetic inference is similar to machine learning approaches as it is based on a machine-led search of the solution space, therefore avoiding some of the subjectivity of other classification systems. Our prototype approach for constructing an industry cladogram is based on process characteristics according to the innovation framework derived from Schumpeter to capture evolution in a given sector. The resulting cladogram represents a snapshot in time based on detailed study of process characteristics. This work could be an important tool for the design of scenarios for more detailed modeling. Cladograms reveal groupings of emerging or dominant processes and their implications in a way that may be helpful for policymakers and entrepreneurs, allowing them to see the larger picture, other good ideas, or competitors. Constructing a cladogram could be a good first step to analysis of many industries (e.g. nitrogenous fertilizer production, ethyl alcohol manufacturing), to understand their heterogeneity, emerging trends, and coherent groupings of related innovations.
Finally, validation is performed for facility-level energy estimates from the EPA Greenhouse Gas Reporting Program. Facility-level data availability continues to be a major challenge for industrial modeling. The method outlined by (McMillan et al. 2016; McMillan and Ruth 2019) allows estimating of facility level energy use based on mandatory greenhouse gas reporting. The validation provided here is an important step for further use of this data for industrial energy modeling.
View Full
Paper PDF
-
The Extent and Nature of Establishment Level Diversification in Sixteen U.S. Manufacturing Industries
August 1990
Working Paper Number:
CES-90-08
This paper examines the heterogeneity of establishments in sixteen manufacturing industries. Basic statistical measures are used to decompose product diversification at the establishment level into industry, firm, and establishment effects. The industry effect is the weakest; nearly all the observed heterogeneity is establishment specific. Product diversification at the establishment level is idiosyncratic to the firm. Establishments within a firm exhibit a significant degree of homogeneity, although the grouping of products differ across firms. With few exceptions, economies of scope and scale in production appear to play a minor role in the establishment's mix of outputs.
View Full
Paper PDF