CREAT: Census Research Exploration and Analysis Tool

Labor Market Segmentation and the Distribution of Income: New Evidence from Internal Census Bureau Data

August 2023

Working Paper Number:

CES-23-41

Abstract

In this paper, we present new findings that validate earlier literature on the apparent segmentation of the US earnings distribution. Previous contributions posited that the observed distribution of earnings combined two or three distinct signals and was thus appropriately modeled as a finite mixture of distributions. Furthermore, each component in the mixture appeared to have distinct distributional features hinting at qualitatively distinct generating mechanisms behind each component, providing strong evidence for some form of labor market segmentation. This paper presents new findings that support these earlier conclusions using internal CPS ASEC data spanning a much longer study period from 1974 to 2016. The restricted-access internal data is not subject to the same level of top-coding as the public-use data that earlier contributions to the literature were based on. The evolution of the mixture components provides new insights about changes in the earnings distribution including earnings inequality. In addition, we correlate component membership with worker type to provide a tacit link to various theoretical explanations for labor market segmentation, while solving the problem of assigning observations to labor market segments a priori.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
economist, quarterly, earnings, employ, employee, labor, hiring, salary, workers earnings, irs, earner, wage earnings, income distributions, earnings workers

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Internal Revenue Service, National Bureau of Economic Research, Current Population Survey, Research Data Center, Special Sworn Status, Federal Statistical Research Data Center

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Labor Market Segmentation and the Distribution of Income: New Evidence from Internal Census Bureau Data' are listed below in order of similarity.