CREAT: Census Research Exploration and Analysis Tool

The Classification of Manufacturing Industries: an Input-Based Clustering of Activity

August 1990

Working Paper Number:

CES-90-07

Abstract

The classification and aggregation of manufacturing data is vital for the analysis and reporting of economic activity. Most organizations and researchers use the Standard Industrial Classification (SIC) system for this purpose. This is, however, not the only option. Our paper examines an alternative classification based on clustering activity using production technologies. While this approach yields results which are similar to the SIC, there are important differences between the two classifications in terms of the specific industrial categories and the amount of information lost through aggregation.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
manufacturing, aggregation, statistical, industrial, aggregate, classified, cluster, industrial classification, classification, classifying

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Standard Industrial Classification, Longitudinal Research Database, Office of Management and Budget, Fabricated Metal Products

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'The Classification of Manufacturing Industries: an Input-Based Clustering of Activity' are listed below in order of similarity.