-
Fatal Errors: The Mortality Value of Accurate Weather Forecasts
June 2023
Working Paper Number:
CES-23-30
We provide the first revealed preference estimates of the benefits of routine weather forecasts. The benefits come from how people use advance information to reduce mor tality from heat and cold. Theoretically, more accurate forecasts reduce mortality if and only if mortality risk is convex in forecast errors. We test for such convexity using data on the universe of mortality events and weather forecasts for a twelve-year period in the U.S. Results show that erroneously mild forecasts increase mortality whereas erro neously extreme forecasts do not reduce mortality. Making forecasts 50% more accurate would save 2,200 lives per year. The public would be willing to pay $112 billion to make forecasts 50% more accurate over the remainder of the century, of which $22 billion reflects how forecasts facilitate adaptation to climate change.
View Full
Paper PDF
-
Improving Estimates of Neighborhood Change with Constant Tract Boundaries
May 2022
Working Paper Number:
CES-22-16
Social scientists routinely rely on methods of interpolation to adjust available data to their research needs. This study calls attention to the potential for substantial error in efforts to harmonize data to constant boundaries using standard approaches to areal and population interpolation. We compare estimates from a standard source (the Longitudinal Tract Data Base) to true values calculated by re-aggregating original 2000 census microdata to 2010 tract areas. We then demonstrate an alternative approach that allows the re-aggregated values to be publicly disclosed, using 'differential privacy' (DP) methods to inject random noise to protect confidentiality of the raw data. The DP estimates are considerably more accurate than the interpolated estimates. We also examine conditions under which interpolation is more susceptible to error. This study reveals cause for greater caution in the use of interpolated estimates from any source. Until and unless DP estimates can be publicly disclosed for a wide range of variables and years, research on neighborhood change should routinely examine data for signs of estimation error that may be substantial in a large share of tracts that experienced complex boundary changes.
View Full
Paper PDF
-
Misallocation or Mismeasurement?
February 2020
Working Paper Number:
CES-20-07
The ratio of revenue to inputs differs greatly across plants within countries such as the U.S. and India. Such gaps may reflect misallocation which hinders aggregate productivity. But differences in measured average products need not reflect differences in true marginal products. We propose a way to estimate the gaps in true marginal products in the presence of measurement error. Our method exploits how revenue growth is less sensitive to input growth when a plant's average products are overstated by measurement error. For Indian manufacturing from 1985'2013, our correction lowers potential gains from reallocation by 20%. For the U.S. the effect is even more dramatic, reducing potential gains by 60% and eliminating 2/3 of a severe downward trend in allocative efficiency over 1978'2013.
View Full
Paper PDF
-
Housing Booms and the U.S. Productivity Puzzle
January 2020
Working Paper Number:
CES-20-04
The United States has been experiencing a slowdown in productivity growth for more than a decade. I exploit geographic variation across U.S. Metropolitan Statistical Areas (MSAs) to investigate the link between the 2006-2012 decline in house prices (the housing bust) and the productivity slowdown. Instrumental variable estimates support a causal relationship between the housing bust and the productivity slowdown. The results imply that one standard deviation decline in house prices translates into an increment of the productivity gap -- i.e. how much an MSA would have to grow to catch up with the trend -- by 6.9p.p., where the average gap is 14.51%. Using a newly-constructed capital expenditures measure at the MSA level, I find that the long investment slump that came out of the Great Recession explains an important part of this effect. Next, I document that the housing bust led to the investment slump and, ultimately, the productivity slowdown, mostly through the collapse in consumption expenditures that followed the bust. Lastly, I construct a quantitative general equilibrium model that rationalizes these empirical findings, and find that the housing bust is behind roughly 50 percent of the productivity slowdown.
View Full
Paper PDF
-
What Do Establishments Do When Wages Increase?
Evidence from Minimum Wages in the United States
November 2019
Working Paper Number:
CES-19-31
I investigate how establishments adjust their production plans on various margins when wage rates increase. Exploiting state-by-year variation in minimum wage, I analyze U.S. manufacturing plants' responses over a 23-year period. Using instrumental variable method and Census Microdata, I find that when the hourly wage of production workers increases by one percent, manufacturing plants reduce the total hours worked by production workers by 0.7 percent and increase capital expenditures on machinery and equipment by 2.7 percent. The reduction in total hours worked by production workers is driven by intensive-margin changes. The estimated elasticity of substitution between capital and labor is 0.85. Following the wage increases, no statistically significant changes emerge in revenue, materials or total factor productivity. Additionally, I nd that when wage rates increase, establishments are more likely to exit the market. Finally, I provide evidence that when the minimum wage increases the wages of some of the establishments in a firm, the firm also increases the wages for its other establishments.
View Full
Paper PDF
-
Predictive Analytics and Organizational Architecture:
Plant-Level Evidence from Census Data
January 2019
Working Paper Number:
CES-19-02
We examine trends in the use of predictive analytics for a sample of more than 25,000 manufacturing plants using proprietary data from the US Census Bureau. Comparing 2010 and 2015, we find that use of predictive analytics has increased markedly, with the greatest use in younger plants, professionally-managed firms, more educated workforces, and stable industries. Decisions on data to be gathered originate from headquarters and are associated with less delegation of decision-making and more widespread awareness of quantitative targets among plant employees. Performance targets become more accurate, long-term oriented, and linked to company-wide performance, and management incentives strengthen, both in terms of monetary bonuses and career outcomes. Plants increasing predictive analytics become more efficient, with lower inventory, increased volume of shipments, narrower product mix, reduced management payroll and increased use of flexible and temporary employees. Results are robust to a specification based on increased government demand for data.
View Full
Paper PDF
-
High Growth Young Firms: Contribution to Job, Output and Productivity Growth
February 2017
Working Paper Number:
carra-2017-03
Recent research shows that the job creating prowess of small firms in the U.S. is better attributed to startups and young firms that are small. But most startups and young firms either fail or don't create jobs. A small proportion of young firms grow rapidly and they account for the long lasting contribution of startups to job growth. High growth firms are not well understood in terms of either theory or evidence. Although the evidence of their role in job creation is mounting, little is known about their life cycle dynamics, or their contribution to other key outcomes such as real output growth and productivity. In this paper, we enhance the Longitudinal Business Database with gross output (real revenue) measures. We find that the patterns for high output growth firms largely mimic those for high employment growth firms. High growth output firms are disproportionately young and make disproportionate contributions to output and productivity growth. The share of activity accounted for by high growth output and employment firms varies substantially across industries - in the post 2000 period the share of activity accounted for by high growth firms is significantly higher in the High Tech and Energy related industries. A firm in a small business intensive industry is less likely to be a high output growth firm but small business intensive industries don't have significantly smaller shares of either employment or output activity accounted for by high growth firms.
View Full
Paper PDF
-
Considering the Use of Stock and Flow Outcomes in Empirical Analyses: An Examination of Marriage Data
January 2017
Working Paper Number:
CES-17-64
This paper fills an important void assessing how the use of stock outcomes as compared to flow outcomes may yield disparate results in empirical analyses, despite often being used interchangeably. We compare analyses using a stock outcome, marital status, to those using a flow
outcome, entry into marriage, from the same dataset, the American Community Survey. This paper considers two different questions and econometric approaches using these alternative measures: the effect of the Affordable Care Act young adult provision on marriage using a difference-indifferences
approach and the relationship between aggregate unemployment rates and marriage rates using a simpler ordinary least squares regression approach. Results from both analyses show stock and flow data yield divergent results in terms of sign and significance. Additional analyses suggest prior-period temporary shocks and migration may contribute to this discrepancy. These results suggest using caution when conducting analyses using stock data as they may produce false negative results or spurious false positive results, which could in turn give rise to misleading policy implications.
View Full
Paper PDF
-
Revisiting the Effects of Unemployment Insurance Extensions on Unemployment: A Measurement Error-Corrected Regression Discontinuity Approach
March 2016
Working Paper Number:
carra-2016-01
The extension of Unemployment Insurance (UI) benefits was a key policy response to the Great Recession. However, these benefit extensions may have had detrimental labor market effects. While evidence on the individual labor supply response indicates small effects on unemployment, recent work by Hagedorn et al. (2015) uses a county border pair identification strategy to find that the total effects inclusive of effects on labor demand are substantially larger. By focusing on variation within border county pairs, this identification strategy requires counties in the pairs to be similar in terms of unobservable factors. We explore this assumption using an alternative regression discontinuity approach that controls for changes in unobservables by distance to the border. To do so, we must account for measurement error induced by using county-level aggregates. These new results provide no evidence of a large change in unemployment induced by differences in UI generosity across state boundaries. Further analysis suggests that individuals respond to UI benefit differences across boundaries by targeting job search in high-benefit states, thereby raising concerns of treatment spillovers in this setting. Taken together, these two results suggest that the effect of UI benefit extensions on unemployment remains an open question.
View Full
Paper PDF
-
High Growth Young Firms: Contribution to Job, Output and Productivity Growth
January 2016
Working Paper Number:
CES-16-49
Recent research shows that the job creating prowess of small firms in the U.S. is better attributed to startups and young firms that are small. But most startups and young firms either fail or don't create jobs. A small proportion of young firms grow rapidly and they account for the long lasting contribution of startups to job growth. High growth firms are not well understood in terms of either theory or evidence. Although the evidence of their role in job creation is mounting, little is known about their life cycle dynamics, or their contribution to other key outcomes such as real output growth and productivity. In this paper, we enhance the Longitudinal Business Database with gross output (real revenue) measures. We find that the patterns for high output growth firms largely mimic those for high employment growth firms. High growth output firms are disproportionately young and make disproportionate contributions to output and productivity growth. The share of activity accounted for by high growth output and employment firms varies substantially across industries ' in the post 2000 period the share of activity accounted for by high growth firms is significantly higher in the High Tech and Energy related industries. A firm in a small business intensive industry is less likely to be a high output growth firm but small business intensive industries don't have significantly smaller shares of either employment or output activity accounted for by high growth firms.
View Full
Paper PDF