CREAT: Census Research Exploration and Analysis Tool

Clusters and Entrepreneurship

September 2010

Working Paper Number:

CES-10-31

Abstract

This paper examines the role of regional clusters in regional entrepreneurship. We focus on the distinct influences of convergence and agglomeration on growth in the number of start-up firms as well as in employment in these new firms in a given region-industry. While reversion to the mean and diminishing returns to entrepreneurship at the region-industry level can result in a convergence effect, the presence of complementary economic activity creates externalities that enhance incentives and reduce barriers for new business creation. Clusters are a particularly important way through which location-based complementarities are realized. The empirical analysis uses a novel panel dataset from the Longitudinal Business Database of the Census Bureau and the U.S. Cluster Mapping Project (Porter, 2003). Using this dataset, there is significant evidence of the positive impact of clusters on entrepreneurship. After controlling for convergence in start-up activity at the region-industry level, industries located in regions with strong clusters (i.e. a large presence of other related industries) experience higher growth in new business formation and start-up employment. Strong clusters are also associated with the formation of new establishments of existing firms, thus influencing the location decision of multiestablishment firms. Finally, strong clusters contribute to start-up firm survival.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
econometric, growth, entrepreneurial, entrepreneur, entrepreneurship, subsidiary, sector, regional, cluster, location, area, region, geographically, regional industry, regional industries

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Standard Industrial Classification, Longitudinal Business Database, North American Industry Classification System

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Clusters and Entrepreneurship' are listed below in order of similarity.