A striking feature of micro-level plant data is the presence of significant variation in factor cost shares across plants within an industry. We develop a methodology to decompose cost shares into idiosyncratic and group-specific components. In particular, we carry out a cluster analysis to recover the number and membership of groups using breaks in the dispersion of factor cost shares across plants. We apply our methodology to Chilean plant-level data and find that group-specific variation accounts for approximately one-third of the variation in factor shares across firms. We also study the implications ofthese groups in cost shares on the gains from eliminating misallocation. We place bounds on their importance and find that ignoring them can overstate the gains from eliminating misallocation by up to one-third.
-
Micro Data and the Macro Elasticity of Substitution
March 2012
Working Paper Number:
CES-12-05
We estimate the aggregate elasticity of substitution between capital and labor in the US manufacturing sector. We show that the aggregate elasticity of substitution can be expressed as a simple function of plant level structural parameters and sufficient statistics of the distribution of plant input cost shares. We then use plant level data from the Census of Manufactures to construct a local elasticity of substitution at various levels of aggregation. Our approach does not assume the existence of a stable aggregate production function, as we build up our estimate from the cross section of plants at a point in time. Accounting for substitution within and across plants, we find that the aggregate elasticity is substantially below unity at approximately 0.7. Lastly we assess the sources of the bias of aggregate technical change from 1987 to 1997. We find that the labor augmenting character of aggregate technical change is due almost exclusively to labor augmenting productivity growth at the plant level rather than relative growth in capital intensive plants.
View Full
Paper PDF
-
Misallocation or Mismeasurement?
February 2020
Working Paper Number:
CES-20-07
The ratio of revenue to inputs differs greatly across plants within countries such as the U.S. and India. Such gaps may reflect misallocation which hinders aggregate productivity. But differences in measured average products need not reflect differences in true marginal products. We propose a way to estimate the gaps in true marginal products in the presence of measurement error. Our method exploits how revenue growth is less sensitive to input growth when a plant's average products are overstated by measurement error. For Indian manufacturing from 1985'2013, our correction lowers potential gains from reallocation by 20%. For the U.S. the effect is even more dramatic, reducing potential gains by 60% and eliminating 2/3 of a severe downward trend in allocative efficiency over 1978'2013.
View Full
Paper PDF
-
The Classification of Manufacturing Industries: an Input-Based Clustering of Activity
August 1990
Working Paper Number:
CES-90-07
The classification and aggregation of manufacturing data is vital for the analysis and reporting of economic activity. Most organizations and researchers use the Standard Industrial Classification (SIC) system for this purpose. This is, however, not the only option. Our paper examines an alternative classification based on clustering activity using production technologies. While this approach yields results which are similar to the SIC, there are important differences between the two classifications in terms of the specific industrial categories and the amount of information lost through aggregation.
View Full
Paper PDF
-
Evidence on IO Technology Assumptions From the Longitudinal Research Database
May 1993
Working Paper Number:
CES-93-08
This paper investigates whether a popular IO technology assumption, the commodity technology model, is appropriate for specific United States manufacturing industries, using data on product composition and use of intermediates by individual plants from the Census Longitudinal Research Database. Extant empirical research has suggested the rejection of this model, owing to the implication of aggregate data that negative inputs are required to make particular goods. The plant-level data explored here suggest that much of the rejection of the commodity technology model from aggregative data was spurious; problematic entries in industry-level IO tables generally have a very low Census content. However, among the other industries for which Census data on specified materials use is available, there is a sound statistical basis for rejecting the commodity technology model in about one-third of the cases: a novel econometric test demonstrates a fundamental heterogeneity of materials use among plants that only produce the primary products of the industry.
View Full
Paper PDF
-
Environmental Regulation, Abatement, and Productivity: A Frontier Analysis
September 2013
Working Paper Number:
CES-13-51
This research studies the link between environmental regulation and plant level productivity in two U.S. manufacturing industries: pulp and paper mills and oil refineries using Data Envelopment Analysis (DEA) models. Data on abatement spending, emissions and abated emissions are used in different DEA models to study plant productivity outcomes when accounting for abatement spending or emissions regulations. Results indicate that pulp and paper mills and oil refineries in the U.S. suffered decreases in productivity due to pollution abatement activities from 1974 to 2000. These losses in productivity are substantial but have been slowly trending downwards even when the regulations have tended to become more stringent and emission of pollutants has declined suggesting that the best practice has shifted over time. Results also show that the reported abatement expenditures are not able to explain all the losses arising out of regulation suggesting that these abatement expenditures are consistently under-reported.
View Full
Paper PDF
-
Are We Undercounting Reallocation's Contribution to Growth?
January 2013
Working Paper Number:
CES-13-55R
There has been a strong surge in aggregate productivity growth in India since 1990, following
significant economic reforms. Three recent studies have used two distinct methodologies to decompose the sources of growth, and all conclude that it has been driven by within-plant increases in technical efficiency and not between-plant reallocation of inputs. Given the nature of the reforms, where many barriers to input reallocation were removed, this finding has surprised researchers and been dubbed 'India's Mysterious Manufacturing Miracle.' In this paper, we show that the methodologies used may artificially understate the extent of reallocation. One approach, using growth in value added, counts all reallocation growth arising from the movement of intermediate inputs as technical efficiency growth. The second approach, using the Olley-Pakes decomposition, uses estimates of plant-level total factor productivity (TFP) as a proxy for the marginal product of inputs. However, in equilibrium, TFP and the marginal product of inputs are unrelated. Using microdata on manufacturing from five countries ' India, the U.S., Chile, Colombia, and Slovenia ' we show that both approaches significantly understate the true
role of reallocation in economic growth. In particular, reallocation of materials is responsible for over half of aggregate Indian manufacturing productivity growth since 2000, substantially larger than either the contribution of primary inputs or the change in the covariance of productivity and size.
View Full
Paper PDF
-
Are We Overstating the Economic Costs of Environmental Protection?
May 1997
Working Paper Number:
CES-97-12
Reported expenditures for environmental protection in the U.S. are estimated to exceed $150 billion annually or about 2% of GDP. This estimate is often used as an assessment of the burden of current regulatory efforts and a standard against which the associated benefits are measured. This makes it a key statistic in the debate surrounding both current and future environmental regulation. Little is known, however, about how well reported expenditures relate to true economic cost. True economic cost depends on whether reported environmental expenditures generate incidental savings, involve uncounted burdens, or accurately reflect the total cost of environmental protection. This paper explores the relationship between reported expenditures and economic cost in a number of major manufacturing industries. Previous research has suggested that an incremental $1 of reported environmental expenditures increases total production costs by anywhere from $1 to $12, i.e., increases in reported costs probably understate the actual increase in economic cost. Surprisingly, our results suggest the reverse, that increases in reported costs may overstate the actual increase in economic cost. Our results are based a large plant-level data set for eleven four-digit SIC industries. We employ a cost-function modeling approach that involves three basic steps. First, we treat real environmental expenditures as a second output of the plant, reflecting perceived environmental abatement efforts. Second, we model the joint production of conventional output and environmental effort as a cost-minimization problem. Third, we calculate the effect of an incremental dollar of reported environmental expenditures at the plant, industry, and manufacturing sector levels. Our approach differs from previous work with similar data by considering a large number of industries, using a cost-function modeling approach, and paying particular attention to plant-specific effects. Our preferred, fixed-effects model obtains an aggregate estimate of thirteen cents in increased costs for every dollar of reported incremental pollution control expenditures, with a standard error of sixty-one cents. This single estimate, however, conceals the wide range of values observed at the industry and plant level. We also find that estimates using an alternative, random-effects model are uniformly higher. Although the higher, random-effects estimates are more consistent with previous work, we believe they are biased by omitted variables characterizing differences among plants. While further research is needed, our results suggest that previous estimates of the economic cost associated with environmental expenditures have been biased upward and that the possibility of overstatement is quite real. Key words: environmental costs, fixed-effects, translog cost model
View Full
Paper PDF
-
Does Higher Productivity Dispersion Imply Greater Misallocation?A Theoretical and Empirical Analysis
January 2016
Working Paper Number:
CES-16-42
Recent research maintains that the observed variation in productivity within industries reflects resource misallocation and concludes that large GDP gains may be obtained from market-liberalizing polices. Our theoretical analysis examines the impact on productivity dispersion of reallocation frictions in the form of costs of entry, operation, and restructuring, and shows that reforms reducing these frictions may raise dispersion of productivity across firms. The model does not imply a negative relationship between aggregate productivity and productivity dispersion. Our empirical analysis focuses on episodes of liberalizing policy reforms in the U.S. and six East European transition economies. Deregulation of U.S. telecommunications equipment manufacturing is associated with increased, not reduced, productivity dispersion, and every transition economy in our sample shows a sharp rise in dispersion after liberalization. Productivity dispersion under central planning is similar to that in the U.S., and it rises faster in countries adopting faster paces of liberalization. Lagged productivity dispersion predicts higher future productivity growth. The analysis suggests there is no simple relationship between the policy environment and productivity dispersion.
View Full
Paper PDF
-
Do Firms Mitigate or Magnify Capital Misallocation? Evidence from Plant-Level Data
January 2017
Working Paper Number:
CES-17-14
Almost two thirds of the cross-plant dispersion in marginal revenue products of capital occurs
across plants within the same firm rather than between firms. Even though firms allocate investment very differently across their plants, they do not equalize marginal revenue products across their plants. We reconcile these findings in a model of multi-plant firms, physical adjustment costs and credit constraints. Credit constrained multi-plant firms can utilize internal capital markets by concentrating internal funds on investment projects in only a few of their plants in a given period and rotating funds to another set of plants in the future. The resulting increase in within-firm dispersion of marginal revenue products of capital is hence not a symptom of misallocation within the firm, but rather actions taken by the firm to mitigate external credit constraints and adjustment costs of capital. Economies with multi-plant firms produce more aggregate output despite higher dispersion in marginal revenue products of capital compared to economies with single-plant firms. Because emerging economies are predominantly populated by single-plant firms, the gains from reducing their distortions to the level of developed are
larger than previously thought.
View Full
Paper PDF
-
THE MARGINS OF GLOBAL SOURCING: THEORY AND EVIDENCE FROM U.S. FIRMS
December 2014
Working Paper Number:
CES-14-47
This paper studies the extensive and intensive margins of firms' global sourcing decisions. We develop a quantifiable multi-country sourcing model in which heterogeneous firms self-select into importing based on their productivity and country-specific variables. The model delivers a simple closed-form solution for firm profits as a function of the countries from which a firm imports, as well as those countries' characteristics. In contrast to canonical models of exporting in which firm profits are additively separable across exporting markets, we show that global sourcing decisions naturally interact through the firm's cost function. In particular, the marginal change in profits from adding a country to the firm's set of potential sourcing locations depends on the number and characteristics of other countries in the set. Still, under plausible parametric restrictions, selection into importing features complementarity across markets and firms' sourcing strategies follow a hierarchical structure analogous to the one predicted by exporting models. Our quantitative analysis exploits these complementarities to distinguish between a country's potential as a marginal cost-reducing source of inputs and the fixed cost associated with sourcing from this country. Counterfactual exercises suggest that a shock to the potential benefits of sourcing from a country leads to significant and heterogeneous changes in sourcing across both countries and firms.
View Full
Paper PDF