A striking feature of micro-level plant data is the presence of significant variation in factor cost shares across plants within an industry. We develop a methodology to decompose cost shares into idiosyncratic and group-specific components. In particular, we carry out a cluster analysis to recover the number and membership of groups using breaks in the dispersion of factor cost shares across plants. We apply our methodology to Chilean plant-level data and find that group-specific variation accounts for approximately one-third of the variation in factor shares across firms. We also study the implications ofthese groups in cost shares on the gains from eliminating misallocation. We place bounds on their importance and find that ignoring them can overstate the gains from eliminating misallocation by up to one-third.
-
Micro Data and the Macro Elasticity of Substitution
March 2012
Working Paper Number:
CES-12-05
We estimate the aggregate elasticity of substitution between capital and labor in the US manufacturing sector. We show that the aggregate elasticity of substitution can be expressed as a simple function of plant level structural parameters and sufficient statistics of the distribution of plant input cost shares. We then use plant level data from the Census of Manufactures to construct a local elasticity of substitution at various levels of aggregation. Our approach does not assume the existence of a stable aggregate production function, as we build up our estimate from the cross section of plants at a point in time. Accounting for substitution within and across plants, we find that the aggregate elasticity is substantially below unity at approximately 0.7. Lastly we assess the sources of the bias of aggregate technical change from 1987 to 1997. We find that the labor augmenting character of aggregate technical change is due almost exclusively to labor augmenting productivity growth at the plant level rather than relative growth in capital intensive plants.
View Full
Paper PDF
-
Misallocation or Mismeasurement?
February 2020
Working Paper Number:
CES-20-07
The ratio of revenue to inputs differs greatly across plants within countries such as the U.S. and India. Such gaps may reflect misallocation which hinders aggregate productivity. But differences in measured average products need not reflect differences in true marginal products. We propose a way to estimate the gaps in true marginal products in the presence of measurement error. Our method exploits how revenue growth is less sensitive to input growth when a plant's average products are overstated by measurement error. For Indian manufacturing from 1985'2013, our correction lowers potential gains from reallocation by 20%. For the U.S. the effect is even more dramatic, reducing potential gains by 60% and eliminating 2/3 of a severe downward trend in allocative efficiency over 1978'2013.
View Full
Paper PDF
-
Pollution Abatement Expenditures and Plant-Level Productivity: A Production Function Approach
August 2003
Working Paper Number:
CES-03-16
In this paper, we investigate the impact of environmental regulation on productivity using a Cobb-Douglas production function framework. Estimating the effects of regulation on productivity can be done with a top-down approach using data for broad sectors of the economy, or a more disaggregated bottom-up approach. Our study follows a bottom-up approach using data from the U.S. paper, steel, and oil industries. We measure environmental regulation using plant-level information on pollution abatement expenditures, which allows us to distinguish between productive and abatement expenditures on each input. We use annual Census Bureau information (1979-1990) on output, labor, capital, and material inputs, and pollution abatement operating costs and capital expenditures for 68 pulp and paper mills, 55 oil refineries, and 27 steel mills. We find that pollution abatement inputs generally contribute little or nothing to output, especially when compared to their '''productive''' equivalents. Adding an aggregate pollution abatement cost measure to a Cobb-Douglas production function, we find that a $1 increase in pollution abatement costs leads to an estimated productivity decline of $3.11, $1.80, and $5.98 in the paper, oil, and steel industries respectively. These findings imply substantial differences across industries in their sensitivity to pollution abatement costs, arguing for a bottom-up approach that can capture these differences. Further differentiating plants by their production technology, we find substantial differences in the impact of pollution abatement costs even within industries, with higher marginal costs at plants with more polluting technologies. Finally, in all three industries, plants concentrating on change-in-production-process abatement techniques have higher productivity than plants doing predominantly end-of-line abatement, but also seem to be more affected by pollution abatement operating costs. Overall, our results point to the importance using detailed, disaggregated analyses, even below the industry level, when trying to model the costs of forcing plants to reduce their emissions.
View Full
Paper PDF
-
Output Price And Markup Dispersion In Micro Data: The Roles Of Producer And Heterogeneity And Noise
August 1997
Working Paper Number:
CES-97-10
This paper provides empirical evidence on the extent of producer heterogeneity in the output market by analyzing output price and price-marginal cost markups at the plant level for thirteen homogeneous manufactured goods. It relies on micro data from the U.S. Census of Manufactures over the 1963-1987 period. The amount of price heterogeneity varies substantially across products. Over time, plant transition patterns indicate more persistence in the pricing of individual plants than would be generated by purely random movements. High-price and low-price plants remain in the same part of the price distribution with high frequency, suggesting that underlying time-invariant structural factors contribute to the price dispersion. For all but two products, large producers have lower output prices. Marginal cost and the markups are estimated for each plant. The markup remains unchanged or increases with plant size for all but four of the products and declining marginal costs play an important role in generating this pattern. The lower production costs for large producers are, at least partially, passed on to purchasers as lower output prices. Plants with the highest and lowest markups tend to remain so over time, although overall the persistence in markups is less than for output price, suggesting a larger role for idiosyncratic shocks in generating markup variation.
View Full
Paper PDF
-
Are We Undercounting Reallocation's Contribution to Growth?
January 2013
Working Paper Number:
CES-13-55R
There has been a strong surge in aggregate productivity growth in India since 1990, following
significant economic reforms. Three recent studies have used two distinct methodologies to decompose the sources of growth, and all conclude that it has been driven by within-plant increases in technical efficiency and not between-plant reallocation of inputs. Given the nature of the reforms, where many barriers to input reallocation were removed, this finding has surprised researchers and been dubbed 'India's Mysterious Manufacturing Miracle.' In this paper, we show that the methodologies used may artificially understate the extent of reallocation. One approach, using growth in value added, counts all reallocation growth arising from the movement of intermediate inputs as technical efficiency growth. The second approach, using the Olley-Pakes decomposition, uses estimates of plant-level total factor productivity (TFP) as a proxy for the marginal product of inputs. However, in equilibrium, TFP and the marginal product of inputs are unrelated. Using microdata on manufacturing from five countries ' India, the U.S., Chile, Colombia, and Slovenia ' we show that both approaches significantly understate the true
role of reallocation in economic growth. In particular, reallocation of materials is responsible for over half of aggregate Indian manufacturing productivity growth since 2000, substantially larger than either the contribution of primary inputs or the change in the covariance of productivity and size.
View Full
Paper PDF
-
Foreign Direct Investment, Geography, and Welfare
September 2024
Working Paper Number:
CES-24-45
We study the impact of FDI on domestic welfare using a model of internal trade with variable markups that incorporates intranational transport costs. The model allows us to disentangle the various channels through which FDI affects welfare. We apply the model to the case of Ethiopian manufacturing, which received considerable amounts of FDI during our study period. We find substantial gains from the presence of foreign firms, both in the local market and in other connected markets in the country. FDI, however, resulted in a modest worsening of allocative efficiency because foreign firms tend to have significantly higher markups than domestic firms. We report consistent findings from our empirical analysis, which utilises microdata on manufacturing firms, information on FDI projects, and geospatial data on improvements in the road network.
View Full
Paper PDF
-
Misallocation and Manufacturing TFP in China and India
February 2009
Working Paper Number:
CES-09-04
Resource misallocation can lower aggregate total factor productivity (TFP). We use micro data on manufacturing establishments to quantify the potential extent of misallocation in China and India compared to the U.S. Compared to the U.S., we measure sizable gaps in marginal products of labor and capital across plants within narrowly-defined industries in China and India. When capital and labor are hypothetically reallocated to equalize marginal products to the extent observed in the U.S., we calculate manufacturing TFP gains of 30-50% in China and 40-60% in India.
View Full
Paper PDF
-
Exploring New Ways to Classify Industries for Energy Analysis and Modeling
November 2022
Working Paper Number:
CES-22-49
Combustion, other emitting processes and fossil energy use outside the power sector have become urgent concerns given the United States' commitment to achieving net-zero greenhouse gas emissions by 2050. Industry is an important end user of energy and relies on fossil fuels used directly for process heating and as feedstocks for a diverse range of applications. Fuel and energy use by industry is heterogeneous, meaning even a single product group can vary broadly in its production routes and associated energy use. In the United States, the North American Industry Classification System (NAICS) serves as the standard for statistical data collection and reporting. In turn, data based on NAICS are the foundation of most United States energy modeling. Thus, the effectiveness of NAICS at representing energy use is a limiting condition for current
expansive planning to improve energy efficiency and alternatives to fossil fuels in industry. Facility-level data could be used to build more detail into heterogeneous sectors and thus supplement data from Bureau of the Census and U.S Energy Information Administration reporting at NAICS code levels but are scarce. This work explores alternative classification schemes for industry based on energy use characteristics and validates an approach to estimate facility-level energy use from publicly available greenhouse gas emissions data from the U.S. Environmental Protection Agency (EPA). The approaches in this study can facilitate understanding of current, as well as possible future, energy demand.
First, current approaches to the construction of industrial taxonomies are summarized along with their usefulness for industrial energy modeling. Unsupervised machine learning techniques are then used to detect clusters in data reported from the U.S. Department of Energy's Industrial Assessment Center program. Clusters of Industrial Assessment Center data show similar levels of correlation between energy use and explanatory variables as three-digit NAICS codes. Interestingly, the clusters each include a large cross section of NAICS codes, which lends additional support to the idea that NAICS may not be particularly suited for correlation between energy use and the variables studied. Fewer clusters are needed for the same level of correlation as shown in NAICS codes. Initial assessment shows a reasonable level of separation using support vector machines with higher than 80% accuracy, so machine learning approaches may be promising for further analysis. The IAC data is focused on smaller and medium-sized facilities and is biased toward higher energy users for a given facility type. Cladistics, an approach for classification developed in biology, is adapted to energy and process characteristics of industries. Cladistics applied to industrial systems seeks to understand the progression of organizations and technology as a type of evolution, wherein traits are inherited from previous systems but evolve due to the emergence of inventions and variations and a selection process driven by adaptation to pressures and favorable outcomes. A cladogram is presented for evolutionary directions in the iron and steel sector. Cladograms are a promising tool for constructing scenarios and summarizing directions of sectoral innovation.
The cladogram of iron and steel is based on the drivers of energy use in the sector. Phylogenetic inference is similar to machine learning approaches as it is based on a machine-led search of the solution space, therefore avoiding some of the subjectivity of other classification systems. Our prototype approach for constructing an industry cladogram is based on process characteristics according to the innovation framework derived from Schumpeter to capture evolution in a given sector. The resulting cladogram represents a snapshot in time based on detailed study of process characteristics. This work could be an important tool for the design of scenarios for more detailed modeling. Cladograms reveal groupings of emerging or dominant processes and their implications in a way that may be helpful for policymakers and entrepreneurs, allowing them to see the larger picture, other good ideas, or competitors. Constructing a cladogram could be a good first step to analysis of many industries (e.g. nitrogenous fertilizer production, ethyl alcohol manufacturing), to understand their heterogeneity, emerging trends, and coherent groupings of related innovations.
Finally, validation is performed for facility-level energy estimates from the EPA Greenhouse Gas Reporting Program. Facility-level data availability continues to be a major challenge for industrial modeling. The method outlined by (McMillan et al. 2016; McMillan and Ruth 2019) allows estimating of facility level energy use based on mandatory greenhouse gas reporting. The validation provided here is an important step for further use of this data for industrial energy modeling.
View Full
Paper PDF
-
Empirical Distribution of the Plant-Level Components of Energy and Carbon Intensity at the Six-digit NAICS Level Using a Modified KAYA Identity
September 2024
Working Paper Number:
CES-24-46
Three basic pillars of industry-level decarbonization are energy efficiency, decarbonization of energy sources, and electrification. This paper provides estimates of a decomposition of these three components of carbon emissions by industry: energy intensity, carbon intensity of energy, and energy (fuel) mix. These estimates are constructed at the six-digit NAICS level from non-public, plant-level data collected by the Census Bureau. Four quintiles of the distribution of each of the three components are constructed, using multiple imputation (MI) to deal with non-reported energy variables in the Census data. MI allows the estimates to avoid non-reporting bias. MI also allows more six-digit NAICS to be estimated under Census non-disclosure rules, since dropping non-reported observations may have reduced the sample sizes unnecessarily. The estimates show wide variation in each of these three components of emissions (intensity) and provide a first empirical look into the plant-level variation that underlies carbon emissions.
View Full
Paper PDF
-
Do Firms Mitigate or Magnify Capital Misallocation? Evidence from Plant-Level Data
January 2017
Working Paper Number:
CES-17-14
Almost two thirds of the cross-plant dispersion in marginal revenue products of capital occurs
across plants within the same firm rather than between firms. Even though firms allocate investment very differently across their plants, they do not equalize marginal revenue products across their plants. We reconcile these findings in a model of multi-plant firms, physical adjustment costs and credit constraints. Credit constrained multi-plant firms can utilize internal capital markets by concentrating internal funds on investment projects in only a few of their plants in a given period and rotating funds to another set of plants in the future. The resulting increase in within-firm dispersion of marginal revenue products of capital is hence not a symptom of misallocation within the firm, but rather actions taken by the firm to mitigate external credit constraints and adjustment costs of capital. Economies with multi-plant firms produce more aggregate output despite higher dispersion in marginal revenue products of capital compared to economies with single-plant firms. Because emerging economies are predominantly populated by single-plant firms, the gains from reducing their distortions to the level of developed are
larger than previously thought.
View Full
Paper PDF