There has been a strong surge in aggregate productivity growth in India since 1990, following
significant economic reforms. Three recent studies have used two distinct methodologies to decompose the sources of growth, and all conclude that it has been driven by within-plant increases in technical efficiency and not between-plant reallocation of inputs. Given the nature of the reforms, where many barriers to input reallocation were removed, this finding has surprised researchers and been dubbed 'India's Mysterious Manufacturing Miracle.' In this paper, we show that the methodologies used may artificially understate the extent of reallocation. One approach, using growth in value added, counts all reallocation growth arising from the movement of intermediate inputs as technical efficiency growth. The second approach, using the Olley-Pakes decomposition, uses estimates of plant-level total factor productivity (TFP) as a proxy for the marginal product of inputs. However, in equilibrium, TFP and the marginal product of inputs are unrelated. Using microdata on manufacturing from five countries ' India, the U.S., Chile, Colombia, and Slovenia ' we show that both approaches significantly understate the true
role of reallocation in economic growth. In particular, reallocation of materials is responsible for over half of aggregate Indian manufacturing productivity growth since 2000, substantially larger than either the contribution of primary inputs or the change in the covariance of productivity and size.
-
Misallocation or Mismeasurement?
February 2020
Working Paper Number:
CES-20-07
The ratio of revenue to inputs differs greatly across plants within countries such as the U.S. and India. Such gaps may reflect misallocation which hinders aggregate productivity. But differences in measured average products need not reflect differences in true marginal products. We propose a way to estimate the gaps in true marginal products in the presence of measurement error. Our method exploits how revenue growth is less sensitive to input growth when a plant's average products are overstated by measurement error. For Indian manufacturing from 1985'2013, our correction lowers potential gains from reallocation by 20%. For the U.S. the effect is even more dramatic, reducing potential gains by 60% and eliminating 2/3 of a severe downward trend in allocative efficiency over 1978'2013.
View Full
Paper PDF
-
The Impact of Plant-Level Resource Reallocations and Technical Progress on U.S. Macroeconomic Growth
December 2009
Working Paper Number:
CES-09-43
We build up from the plant level an "aggregate(d) Solow residual" by estimating every U.S. manufacturing plant's contribution to the change in aggregate final demand between 1976 and 1996. We decompose these contributions into plant-level resource reallocations and plant-level technical efficiency changes. We allow for 459 different production technologies, one for each 4- digit SIC code. Our framework uses the Petrin and Levinsohn (2008) definition of aggregate productivity growth, which aggregates plant-level changes to changes in aggregate final demand in the presence of imperfect competition and other distortions and frictions. On average, we find that aggregate reallocation made a larger contribution than aggregate technical efficiency growth. Our estimates of the contribution of reallocation range from 1:7% to2:1% per year, while our estimates of the average contribution of aggregate technical efficiency growth range from 0:2% to 0:6% per year. In terms of cyclicality, the aggregate technical efficiency component has a standard deviation that is roughly 50% to 100% larger than that of aggregate total reallocation, pointing to an important role for technical efficiency in macroeconomic fluctuations. Aggregate reallocation is negative in only 3 of the 20 years of our sample, suggesting that the movement of inputs to more highly valued activities on average plays a stabilizing role in manufacturing growth.
View Full
Paper PDF
-
The Reallocation Myth
April 2018
Working Paper Number:
CES-18-19
There is a widely held view that much of growth in the U.S. can be attributed to reallocation from low to high productivity firms, including from exiting firms to entrants. Declining dynamism ' falling rates of reallocation and entry/exit in the U.S. ' have therefore been tied to the lackluster growth since 2005. We challenge this view. Gaps in the return to resources do not appear to have narrowed, suggesting that allocative efficiency has not improved in the U.S. in recent decades. Reallocation can also matter if it is a byproduct of innovation. However, we present evidence that most
innovation comes from existing firms improving their own products rather than from entrants or fast-growing firms displacing incumbent firms. Length: 26 pages
View Full
Paper PDF
-
Micro Data and the Macro Elasticity of Substitution
March 2012
Working Paper Number:
CES-12-05
We estimate the aggregate elasticity of substitution between capital and labor in the US manufacturing sector. We show that the aggregate elasticity of substitution can be expressed as a simple function of plant level structural parameters and sufficient statistics of the distribution of plant input cost shares. We then use plant level data from the Census of Manufactures to construct a local elasticity of substitution at various levels of aggregation. Our approach does not assume the existence of a stable aggregate production function, as we build up our estimate from the cross section of plants at a point in time. Accounting for substitution within and across plants, we find that the aggregate elasticity is substantially below unity at approximately 0.7. Lastly we assess the sources of the bias of aggregate technical change from 1987 to 1997. We find that the labor augmenting character of aggregate technical change is due almost exclusively to labor augmenting productivity growth at the plant level rather than relative growth in capital intensive plants.
View Full
Paper PDF
-
Beyond Cobb-Douglas: Estimation of a CES Production Function with Factor Augmenting Technology
February 2011
Working Paper Number:
CES-11-05
Both the recent literature on production function identification and a considerable body of other empirical work on firm expansion assume a Cobb-Douglas production function. Under this assumption, all technical differences are Hicks neutral. I provide evidence from US manufacturing plants against Cobb-Douglas and present an alternative production function that better fits the data. A Cobb Douglas production function has two empirical implications that I show do not hold in the data: a constant cost share of capital and strong comovement in labor productivity and capital productivity (revenue per unit of capital). Within four digit industries, differences in cost shares of capital are persistent over time. Both the capital share and labor productivity increase with revenue, but capital productivity does not. A CES production function with labor augmenting differences and an elasticity of substitution between labor and capital less than one can account for these facts. To identify the labor capital elasticity, I use variation in wages across local labor markets. Since the capital cost to labor cost ratio falls with local area wages, I strongly reject Cobb-Douglas: capital and labor are complements. Now productivity differences are no longer neutral, which has implications on how productivity affects firms' decisions to expand or contract. Non neutral technical improvements will result in higher stocks of capital but not necessarily more hiring of labor. Specifying the correct form of the production function is more generally important for empirical work, as I demonstrate by applying my methodology to address questions of misallocation of capital.
View Full
Paper PDF
-
Decomposing Aggregate Productivity
July 2022
Working Paper Number:
CES-22-25
In this note, we evaluate the sensitivity of commonly-used decompositions for aggregate productivity. Our analysis spans the universe of U.S. manufacturers from 1977 to 2012 and we find that, even holding the data and form of the production function fixed, results on aggregate productivity are extremely sensitive to how productivity at the firm level is measured. Even qualitative statements about the levels of aggregate productivity and the sign of the covariance between productivity and size are highly dependent on how production function parameters are estimated. Despite these difficulties, we uncover some consistent facts about productivity growth: (1) labor productivity is consistently higher and less error-prone than measures of multi-factor productivity; (2) most productivity growth comes from growth within firms, rather than from reallocation across firms; (3) what growth does come from reallocation appears to be driven by net entry, primarily from the exit of relatively less-productive firms.
View Full
Paper PDF
-
Measuring Cross-Country Differences in Misallocation
January 2016
Working Paper Number:
CES-16-50R
We describe differences between the commonly used version of the U.S. Census of Manufactures available at the RDCs and what establishments themselves report. The originally reported data has substantially more dispersion in measured establishment productivity. Measured allocative efficiency is substantially higher in the cleaned data than the raw data: 4x higher in 2002, 20x in 2007, and 80x in 2012. Many of the important editing strategies at the Census, including industry analysts' manual edits and edits using tax records, are infeasible in non-U.S. datasets. We describe a new Bayesian approach for editing and imputation that can be used across contexts.
View Full
Paper PDF
-
The Dynamics of Plant-Level Productivity in U.S. Manufacturing
July 2006
Working Paper Number:
CES-06-20
Using a unique database that covers the entire U.S. manufacturing sector from 1976 until 1999, we estimate plant-level total factor productivity for a large number of plants. We characterize time series properties of plant-level idiosyncratic shocks to productivity, taking into account aggregate manufacturing-sector shocks and industry-level shocks. Plant-level heterogeneity and shocks are a key determinant of the cross-sectional variations in output. We compare the persistence and volatility of the idiosyncratic plant-level shocks to those of aggregate productivity shocks estimated from aggregate data. We find that the persistence of plant level shocks is surprisingly low-we estimate an average autocorrelation of the plantspecific productivity shock of only 0.37 to 0.41 on an annual basis. Finally, we find that estimates of the persistence of productivity shocks from aggregate data have a large upward bias. Estimates of the persistence of productivity shocks in the same data aggregated to the industry level produce autocorrelation estimates ranging from 0.80 to 0.91 on an annual basis. The results are robust to the inclusion of various measures of lumpiness in investment and job flows, different weighting methods, and different measures of the plants' capital stocks.
View Full
Paper PDF
-
Older and Slower: The Startup Deficit's Lasting Effects on Aggregate Productivity Growth
June 2018
Working Paper Number:
CES-18-29
We investigate the link between declining firm entry, aging incumbent firms and sluggish U.S. productivity growth. We provide a dynamic decomposition framework to characterize the contributions to industry productivity growth across the firm age distribution and apply this framework to the newly developed Revenue-enhanced Longitudinal Business Database (ReLBD). Overall, several key findings emerge: (i) the relationship between firm age and productivity growth is downward sloping and convex; (ii) the magnitudes are substantial and significant but fade quickly, with nearly 2/3 of the effect disappearing after five years and nearly the entire effect disappearing after ten; (iii) the higher productivity growth of young firms is driven nearly exclusively by the forces of selection and reallocation. Our results suggest a cumulative drag on aggregate productivity of 3.1% since 1980. Using an instrumental variables strategy we find a consistent pattern across states/MSAs in the U.S. The patterns are broadly consistent with a standard model of firm dynamics with monopolistic competition.
View Full
Paper PDF
-
Entry, Exit, and Plant-Level Dynamics over the Business Cycle
June 2008
Working Paper Number:
CES-08-17
This paper analyzes the implications of plant-level dynamics over the business cycle. We first document basic patterns of entry and exit of U.S. manufacturing plants, in terms of employment and productivity, between 1972 and 1997. We show how entry and exit patterns vary during the business cycle, and that the cyclical pattern of entry is very different from the cyclical pattern of exit. Second, we build a general equilibrium model of plant entry, exit, and employment and compare its predictions to the data. In our model, plants enter and exit endogenously, and the size and productivity of entering and exiting plants are also determined endogenously. Finally, we explore the policy implications of the model. Imposing a firing tax that is constant over time can destabilize the economy by causing fluctuations in the entry rate. Entry subsidies are found to be effective in stabilizing the entry rate and output.
View Full
Paper PDF