CREAT: Census Research Exploration and Analysis Tool

The Dynamics of Plant-Level Productivity in U.S. Manufacturing

July 2006

Working Paper Number:

CES-06-20

Abstract

Using a unique database that covers the entire U.S. manufacturing sector from 1976 until 1999, we estimate plant-level total factor productivity for a large number of plants. We characterize time series properties of plant-level idiosyncratic shocks to productivity, taking into account aggregate manufacturing-sector shocks and industry-level shocks. Plant-level heterogeneity and shocks are a key determinant of the cross-sectional variations in output. We compare the persistence and volatility of the idiosyncratic plant-level shocks to those of aggregate productivity shocks estimated from aggregate data. We find that the persistence of plant level shocks is surprisingly low-we estimate an average autocorrelation of the plantspecific productivity shock of only 0.37 to 0.41 on an annual basis. Finally, we find that estimates of the persistence of productivity shocks from aggregate data have a large upward bias. Estimates of the persistence of productivity shocks in the same data aggregated to the industry level produce autocorrelation estimates ranging from 0.80 to 0.91 on an annual basis. The results are robust to the inclusion of various measures of lumpiness in investment and job flows, different weighting methods, and different measures of the plants' capital stocks.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
production, economist, econometric, macroeconomic, endogeneity, estimating, aggregation, aggregate, estimator, average, regression, productivity shocks, productivity dynamics, aggregate productivity, shock

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Census of Manufactures, Annual Survey of Manufactures, Longitudinal Research Database, Center for Economic Studies, Ordinary Least Squares, Total Factor Productivity, National Bureau of Economic Research, Census Bureau Longitudinal Business Database, Journal of Econometrics, Census Bureau Center for Economic Studies, Longitudinal Business Database, Chicago Census Research Data Center, Economic Census, Research Data Center

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'The Dynamics of Plant-Level Productivity in U.S. Manufacturing' are listed below in order of similarity.