We describe the process for building the Collaborative Micro-productivity Project (CMP) microdata and calculating establishment-level productivity numbers. The documentation is for version 7 and the data cover the years 1972-2020. These data have been used in numerous research papers and are used to create the experimental public-use data product Dispersion Statistics on Productivity (DiSP).
-
Dispersion in Dispersion: Measuring Establishment-Level Differences in Productivity
April 2018
Working Paper Number:
CES-18-25RR
We describe new experimental productivity statistics, Dispersion Statistics on Productivity (DiSP), jointly developed and published by the Bureau of Labor Statistics (BLS) and the Census Bureau. Productivity measures are critical for understanding economic performance. Official BLS productivity statistics, which are available for major sectors and detailed industries, provide information on the sources of aggregate productivity growth. A large body of research shows that within-industry variation in productivity provides important insights into productivity dynamics. This research reveals large and persistent productivity differences across businesses even within narrowly defined industries. These differences vary across industries and over time and are related to productivity-enhancing reallocation. Dispersion in productivity across businesses can provide information about the nature of competition and frictions within sectors, and about the sources of rising wage inequality across businesses. Because there were no official statistics providing this level of detail, BLS and the Census Bureau partnered to create measures of within-industry productivity dispersion. These measures complement official BLS aggregate and industry-level productivity growth statistics and thereby improve our understanding of the rich productivity dynamics in the U.S. economy. The underlying microdata for these measures are available for use by qualified researchers on approved projects in the Federal Statistical Research Data Center (FSRDC) network. These new statistics confirm the presence of large productivity differences and we hope that these new data products will encourage further research into understanding these differences.
View Full
Paper PDF
-
Punctuated Entrepreneurship (Among Women)
May 2018
Working Paper Number:
CES-18-26
The gender gap in entrepreneurship may be explained in part by employee non-compete agreements. Exploiting exogenous state-level variation in non-compete policy, I find that women more strictly subject to non-competes are 11-17% more likely to start companies after their employers dissolve. This result is not explained by the incidence of non-competes or lawsuits; however, women face higher relative costs in defending against potential litigation and in returning to paid employment after abandoning their ventures. Thus entrepreneurship among women may be 'punctuated' in that would-be female founders are throttled by non-competes, their potential unleashed only by the failure of their employers.
View Full
Paper PDF
-
The Dynamics of Plant-Level Productivity in U.S. Manufacturing
July 2006
Working Paper Number:
CES-06-20
Using a unique database that covers the entire U.S. manufacturing sector from 1976 until 1999, we estimate plant-level total factor productivity for a large number of plants. We characterize time series properties of plant-level idiosyncratic shocks to productivity, taking into account aggregate manufacturing-sector shocks and industry-level shocks. Plant-level heterogeneity and shocks are a key determinant of the cross-sectional variations in output. We compare the persistence and volatility of the idiosyncratic plant-level shocks to those of aggregate productivity shocks estimated from aggregate data. We find that the persistence of plant level shocks is surprisingly low-we estimate an average autocorrelation of the plantspecific productivity shock of only 0.37 to 0.41 on an annual basis. Finally, we find that estimates of the persistence of productivity shocks from aggregate data have a large upward bias. Estimates of the persistence of productivity shocks in the same data aggregated to the industry level produce autocorrelation estimates ranging from 0.80 to 0.91 on an annual basis. The results are robust to the inclusion of various measures of lumpiness in investment and job flows, different weighting methods, and different measures of the plants' capital stocks.
View Full
Paper PDF
-
Newly Recovered Microdata on U.S. Manufacturing Plants from the 1950s and 1960s: Some Early Glimpses
September 2011
Working Paper Number:
CES-11-29
Longitudinally-linked microdata on U.S. manufacturing plants are currently available to researchers for 1963, 1967, and 1972-2009. In this paper, we provide a first look at recently recovered manufacturing microdata files from the 1950s and 1960s. We describe their origins and background, discuss their contents, and begin to explore their sample coverage. We also begin to examine whether the available establishment identifier(s) allow record linking. Our preliminary analyses suggest that longitudinally-linked Annual Survey of Manufactures microdata from the mid-1950s through the present ' containing 16 years of additional data ' appears possible though challenging. While a great deal of work remains, we see tremendous value in extending the manufacturing microdata series back into time. With these data, new lines of research become possible and many others can be revisited.
View Full
Paper PDF
-
Productivity Dispersion, Entry, and Growth in U.S. Manufacturing Industries
August 2021
Working Paper Number:
CES-21-21
Within-industry productivity dispersion is pervasive and exhibits substantial variation across countries, industries, and time. We build on prior research that explores the hypothesis that periods of innovation are initially associated with a surge in business start-ups, followed by increased experimentation that leads to rising dispersion potentially with declining aggregate productivity growth, and then a shakeout process that results in higher productivity growth and declining productivity dispersion. Using novel detailed industry-level data on total factor productivity and labor productivity dispersion from the Dispersion Statistics on Productivity along with novel measures of entry rates from the Business Dynamics Statistics and productivity growth data from the Bureau of Labor Statistics for U.S. manufacturing industries, we find support for this hypothesis, especially for the high-tech industries.
View Full
Paper PDF
-
The Impact of Plant-Level Resource Reallocations and Technical Progress on U.S. Macroeconomic Growth
December 2009
Working Paper Number:
CES-09-43
We build up from the plant level an "aggregate(d) Solow residual" by estimating every U.S. manufacturing plant's contribution to the change in aggregate final demand between 1976 and 1996. We decompose these contributions into plant-level resource reallocations and plant-level technical efficiency changes. We allow for 459 different production technologies, one for each 4- digit SIC code. Our framework uses the Petrin and Levinsohn (2008) definition of aggregate productivity growth, which aggregates plant-level changes to changes in aggregate final demand in the presence of imperfect competition and other distortions and frictions. On average, we find that aggregate reallocation made a larger contribution than aggregate technical efficiency growth. Our estimates of the contribution of reallocation range from 1:7% to2:1% per year, while our estimates of the average contribution of aggregate technical efficiency growth range from 0:2% to 0:6% per year. In terms of cyclicality, the aggregate technical efficiency component has a standard deviation that is roughly 50% to 100% larger than that of aggregate total reallocation, pointing to an important role for technical efficiency in macroeconomic fluctuations. Aggregate reallocation is negative in only 3 of the 20 years of our sample, suggesting that the movement of inputs to more highly valued activities on average plays a stabilizing role in manufacturing growth.
View Full
Paper PDF
-
Decomposing Aggregate Productivity
July 2022
Working Paper Number:
CES-22-25
In this note, we evaluate the sensitivity of commonly-used decompositions for aggregate productivity. Our analysis spans the universe of U.S. manufacturers from 1977 to 2012 and we find that, even holding the data and form of the production function fixed, results on aggregate productivity are extremely sensitive to how productivity at the firm level is measured. Even qualitative statements about the levels of aggregate productivity and the sign of the covariance between productivity and size are highly dependent on how production function parameters are estimated. Despite these difficulties, we uncover some consistent facts about productivity growth: (1) labor productivity is consistently higher and less error-prone than measures of multi-factor productivity; (2) most productivity growth comes from growth within firms, rather than from reallocation across firms; (3) what growth does come from reallocation appears to be driven by net entry, primarily from the exit of relatively less-productive firms.
View Full
Paper PDF
-
Large Plant Data in the LRD: Selection of a Sample for Estimation
March 1999
Working Paper Number:
CES-99-06
This paper describes preliminary work with the LRD during our tenure at the Census Bureau as participants in the ASA/NSF/Census Research Program. The objective of the work described here were two-fold. First, we wanted to examine the suitableness of these data for the calculation of plant-level productivity indexes, following procedures typically implemented with time series data. Second, we wanted to select a small number of 2-digit industry groups that would be well suited to the estimation of production functions and systems of factor share equations and factor demand forecasting equations with system-wide techniques. This description of our initial work may be useful to other researchers who are interested in the LRD for the analysis of productivity growth and/or the estimation of systems of factor equations, because the specific results reported in this memo suggest that the data are of good quality, or because the nature of the tasks undertaken provides insight into issues that arise in the analysis of longitudinal establishment data.
View Full
Paper PDF
-
Redesigning the Longitudinal Business Database
May 2021
Working Paper Number:
CES-21-08
In this paper we describe the U.S. Census Bureau's redesign and production implementation of the Longitudinal Business Database (LBD) first introduced by Jarmin and Miranda (2002). The LBD is used to create the Business Dynamics Statistics (BDS), tabulations describing the entry, exit, expansion, and contraction of businesses. The new LBD and BDS also incorporate information formerly provided by the Statistics of U.S. Businesses program, which produced similar year-to-year measures of employment and establishment flows. We describe in detail how the LBD is created from curation of the input administrative data, longitudinal matching, retiming of economic census-year births and deaths, creation of vintage consistent industry codes and noise factors, and the creation and cleaning of each year of LBD data. This documentation is intended to facilitate the proper use and understanding of the data by both researchers with approved projects accessing the LBD microdata and those using the BDS tabulations.
View Full
Paper PDF
-
Rising Markups or Changing Technology?
September 2022
Working Paper Number:
CES-22-38R
Recent evidence suggests the U.S. business environment is changing, with rising market concentration and markups. The most prominent and extensive evidence backs out firm-level markups from the first-order conditions for variable factors. The markup is identified as the ratio of the variable factor's output elasticity to its cost share of revenue. Our analysis starts from this indirect approach, but we exploit a long panel of manufacturing establishments to permit output elasticities to vary to a much greater extent - relative to the existing literature - across establishments within the same industry over time. With our more detailed estimates of output elasticities, the measured increase in markups is substantially dampened, if not eliminated, for U.S. manufacturing. As supporting evidence, we relate differences in the markups' patterns to observable changes in technology (e.g., computer investment per worker, capital intensity, diversification to non-manufacturing) and find patterns in support of changing technology as the driver of those differences.
View Full
Paper PDF