Measuring Total Factor Productivity, Technical Change And The Rate Of Returns To Research And Development
May 1991
Working Paper Number:
CES-91-03
Abstract
Document Tags and Keywords
Keywords
Keywords are automatically generated using KeyBERT, a powerful and innovative
keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant
keywords.
By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the
text, highlighting the most significant topics and trends. This approach not only enhances searchability but
provides connections that go beyond potentially domain-specific author-defined keywords.
:
estimation,
investment,
production,
estimating,
industrial,
aggregate,
productivity growth,
technology,
growth,
technological,
employ,
labor,
measures productivity,
growth productivity,
factor productivity,
recession,
regression,
factory,
producing,
development,
expenditure,
productivity size,
rates productivity,
estimates productivity
Tags
Tags are automatically generated using a pretrained language model from spaCy, which excels at
several tasks, including entity tagging.
The model is able to label words and phrases by part-of-speech,
including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are
identified to contain references to specific institutions, datasets, and other organizations.
:
Standard Industrial Classification,
Longitudinal Research Database,
National Science Foundation,
Center for Economic Studies,
Total Factor Productivity,
Federal Trade Commission,
Organization for Economic Cooperation and Development,
Toxics Release Inventory
Similar Working Papers
Similarity between working papers are determined by an unsupervised neural
network model
know as Doc2Vec.
Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the
capture of semantic meaning in a way that relates to the context of words within the document. The model learns to
associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as
document classification, clustering, and similarity detection by preserving the order and structure of words. The
document vectors are compared using cosine similarity/distance to determine the most similar working papers.
Papers identified with 🔥 are in the top 20% of similarity.
The 10 most similar working papers to the working paper 'Measuring Total Factor Productivity, Technical Change And The Rate Of Returns To Research And Development' are listed below in order of similarity.
-
Working PaperModelling Technical Progress And Total Factor Productivity: A Plant Level Example
October 1988
Working Paper Number:
CES-88-04
Shifts in the production frontier occur because of changes in technology. A model of how a firm learns to use the new technology, or how it adapts from the first production frontier to the second, is suggested. Two different adaptation paths are embodied in a translog cost function and its attendant cost share equations. The paths are the traditional linear time trend and a learning curve. The model is estimated using establishment level data from a non-regulated industry that underwent a technological shift in the time period covered by the data. The learning curve resulted in more plausible estimates of technical progress and total factor productivity growth patterns. A significant finding is that, at the establishment level, all inputs appear to be substitutes.View Full Paper PDF
-
Working PaperComputer Investment, Computer Networks and Productivity
January 2005
Working Paper Number:
CES-05-01
Researchers in a large empirical literature find significant relationships between computers and labor productivity, but the estimated size of that relationship varies considerably. In this paper, we estimate the relationships among computers, computer networks, and plant-level productivity in U.S. manufacturing. Using new data on computer investment, we develop a sample with the best proxies for computer and total capital that the data allow us to construct. We find that computer networks and computer inputs have separate, positive, and significant relationships with U.S. manufacturing plant-level productivity. Keywords: computer input; information technology; labor productivityView Full Paper PDF
-
Working PaperFactor Substitution In U.S. Manufacturing: Does Plant Size Matter
April 1998
Working Paper Number:
CES-98-06
We use micro data for 10,412 U.S. manufacturing plants to estimate the degrees of factor substitution by industry and by plant size. We find that (1) capital, labor, energy and materials are substitutes in production, and (2) the degrees of substitution among inputs are quite similar across plant sizes in a majority of industries. Two important implications of these findings are that (1) small plants are typically as flexible as large plants in factor substitution; consequently, economic policies such energy conservation policies that result in rising energy prices would not cause negative effects on either large or small U.S. manufacturing plants; and (2) since energy and capital are found to be substitutes; the 1973 energy crisis is unlikely to be a significant factor contributing to the post 1973 productivity slowdown. of SubstitutionView Full Paper PDF
-
Working PaperCapital-Energy Substitution Revisted: New Evidence From Micro Data
April 1997
Working Paper Number:
CES-97-04
We use new micro data for 11,520 plants taken from the Census Bureau=s 1991 Manufacturing Energy Consumption Survey (MECS) and 1991 Annual Survey of Manufactures (ASM) to estimate elasticities of substitution between energy and capital. We found that energy and capital are substitutes. We also found that estimates of Allen elasticities of substitution -- which have been used as a standard measure of substitution -- are sensitive to varying data sets and levels of aggregation. In contrast, estimates of Morishima elasticities of substitution -- which are theoretically superior to the Allen elasticities -- are more robust (except when two-digit level data are used). The results support the views that (i) the Morishima elasticity is a better measure of factor substitution and (ii) micro data provide more accurate elasticity estimates than those obtained from aggregate data. Our findings appear to resolve the long-standing conflict among the estimates reported in the many previous studies regarding energy-capital substitution/complementarity.View Full Paper PDF
-
Working PaperCollaborative Micro-productivity Project: Establishment-Level Productivity Dataset, 1972-2020
December 2023
Working Paper Number:
CES-23-65
We describe the process for building the Collaborative Micro-productivity Project (CMP) microdata and calculating establishment-level productivity numbers. The documentation is for version 7 and the data cover the years 1972-2020. These data have been used in numerous research papers and are used to create the experimental public-use data product Dispersion Statistics on Productivity (DiSP).View Full Paper PDF
-
Working PaperExploring The Role Of Acquisition In The Performance Of Firms: Is The "Firm" The Right Unit Of Analysis?
November 1995
Working Paper Number:
CES-95-13
In this article, we examine the effect of acquisitions on productivity performance of acquiring firms using the conventional regression analysis and a method of productivity decomposition. Our empirical work uses both plant- and firm-level data taken from the Longitudinal Research Database (LRD) on the entire population of U.S. food manufacturing firms that operated continuously during 1977-87. We find that (1) acquisitions had a significant, positive effect on acquiring firms' productivity growth, but this effect becomes insignificant when only firm-level data on multi-unit firms are included in the regressions; and (2) the decomposition results show that while the productivity contribution of the external component (acquired plants) is positive, the contribution of the internal component (existing plants) is negative; the two components offset each other leaving productivity of multi-unit acquiring firms virtually unchanged after acquisitions. These results suggest that assessing the impact of acquisitions on the structure and performance of firms requires a careful look at the individual components (i.e., plants) of the firms, particularly for large multi-unit firms.View Full Paper PDF
-
Working PaperAcademic Science, Industrial R&D, and the Growth of Inputs
January 1993
Working Paper Number:
CES-93-01
This paper is a theoretical and empirical investigation of the connection between science, R&D, and the growth of capital. Studies of high technology industries and recent labor studies agree in assigning a large role to science and technology in the growth of human and physical capital, although direct tests of these relationships have not been carried out. This paper builds on the search approach to R&D of Evenson and Kislev (1976) to unravel the complex interactions between science, R&D, and factor markets suggested by these studies. In our theory lagged science increases the returns to R&D, so that scientific advance later feeds into growth of R&D. In turn, product quality improvements and price declines lead to the growth of industry by shifting out new product demand, perhaps at the expense of traditional industries. All this tends to be in favor of the human and physical capital used intensively by high technology industries. This is the source of the factor bias which is implicit in the growth of capital per head. Our empirical work overwhelmingly supports the contention that growth of labor skills and physical capital are linked to science and R&D. It also supports the strong sequencing of events that is a crucial feature of our model, first from science to R&D, and later to output and factor markets.View Full Paper PDF
-
Working PaperScience, R&D, And Invention Potential Recharge: U.S. Evidence
January 1993
Working Paper Number:
CES-93-02
The influence of academic science on industrial R&D seems to have increased in recent years compared with the pre-World War II period. This paper outlines an approach to tracing this influence using a panel of 14 R&D performing industries from 1961-1986. The results indicate an elasticity between real R&D and indicators of stocks of academic science of about 0.6. This elasticity is significant controlling for industry effects. However, the elasticity declines from its level during the 1961-1973 subperiod, when it was 2.2, to 0.5 during the 1974-1986 subperiod. Reasons for the decline include exogenous and endogenous exhaustion of invention potential, and declining incentives to do R&D stemming from a weakening of intellectual property rights. The growth of R&D since the mid-1980s suggests a restoration of R&D incentives in still more recent times.View Full Paper PDF
-
Working PaperUSING LINKED CENSUS R&D-LRD DATA TO ANALYZE THE EFFECT OF R&D INVESTMENT ON TOTAL FACTOR PRODUCTIVITY GROWTH
January 1989
Working Paper Number:
CES-89-02
Previous studies have demonstrated that productivity growth is positively correlated with the intensity of R&D investment. However, existing studies of this relationship at the micro (firm or line of business) level have been subject to some important limitations. The most serious of these has been an inability to adequately control for the diversified activities of corporations. This study makes use of linked Census R&D - LRD data, which provides comprehensive information on each firms' operations at the 4-digit SIC level. A marked improvement in explaining the association between R&D and TFP occurs when we make appropriate use of the data by firm by industry. Significant relationships between the intensities of investment in total, basic, and company-funded R&D, and TFP growth are confirmed.View Full Paper PDF
-
Working PaperThe Demand for Human Capital: A Microeconomic Approach
December 2001
Working Paper Number:
CES-01-16
We propose a model for explaining the demand for human capital based on a CES production function with human capital as an explicit argument in the function. The resulting factor demand model is tested with data on roughly 6,000 plants from the Census Bureau's Longitudinal Research Database. The results show strong complementarity between physical and human capital. Moreover, the complementarity is greater in high than in low technology industries. The results also show that physical capital of more recent vintage is associated with a higher demand for human capital. While the age of a plant as a reflection of learning-by-doing is positively related to the accumulation of human capital, this relation is more pronounced in low technology industries.View Full Paper PDF