Measuring Total Factor Productivity, Technical Change And The Rate Of Returns To Research And Development
May 1991
Working Paper Number:
CES-91-03
Abstract
Document Tags and Keywords
Keywords
Keywords are automatically generated using KeyBERT, a powerful and innovative
keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant
keywords.
By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the
text, highlighting the most significant topics and trends. This approach not only enhances searchability but
provides connections that go beyond potentially domain-specific author-defined keywords.
:
estimation,
investment,
production,
estimating,
industrial,
aggregate,
productivity growth,
technology,
growth,
technological,
employ,
labor,
measures productivity,
growth productivity,
factor productivity,
recession,
regression,
factory,
producing,
development,
expenditure,
productivity size,
rates productivity,
estimates productivity
Tags
Tags are automatically generated using a pretrained language model from spaCy, which excels at
several tasks, including entity tagging.
The model is able to label words and phrases by part-of-speech,
including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are
identified to contain references to specific institutions, datasets, and other organizations.
:
Standard Industrial Classification,
Longitudinal Research Database,
National Science Foundation,
Center for Economic Studies,
Total Factor Productivity,
Federal Trade Commission,
Organization for Economic Cooperation and Development,
Toxics Release Inventory
Similar Working Papers
Similarity between working papers are determined by an unsupervised neural
network model
know as Doc2Vec.
Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the
capture of semantic meaning in a way that relates to the context of words within the document. The model learns to
associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as
document classification, clustering, and similarity detection by preserving the order and structure of words. The
document vectors are compared using cosine similarity/distance to determine the most similar working papers.
Papers identified with 🔥 are in the top 20% of similarity.
The 10 most similar working papers to the working paper 'Measuring Total Factor Productivity, Technical Change And The Rate Of Returns To Research And Development' are listed below in order of similarity.
-
Working PaperComputer Investment, Computer Networks and Productivity
January 2005
Working Paper Number:
CES-05-01
Researchers in a large empirical literature find significant relationships between computers and labor productivity, but the estimated size of that relationship varies considerably. In this paper, we estimate the relationships among computers, computer networks, and plant-level productivity in U.S. manufacturing. Using new data on computer investment, we develop a sample with the best proxies for computer and total capital that the data allow us to construct. We find that computer networks and computer inputs have separate, positive, and significant relationships with U.S. manufacturing plant-level productivity. Keywords: computer input; information technology; labor productivityView Full Paper PDF
-
Working PaperModelling Technical Progress And Total Factor Productivity: A Plant Level Example
October 1988
Working Paper Number:
CES-88-04
Shifts in the production frontier occur because of changes in technology. A model of how a firm learns to use the new technology, or how it adapts from the first production frontier to the second, is suggested. Two different adaptation paths are embodied in a translog cost function and its attendant cost share equations. The paths are the traditional linear time trend and a learning curve. The model is estimated using establishment level data from a non-regulated industry that underwent a technological shift in the time period covered by the data. The learning curve resulted in more plausible estimates of technical progress and total factor productivity growth patterns. A significant finding is that, at the establishment level, all inputs appear to be substitutes.View Full Paper PDF
-
Working PaperFactor Substitution In U.S. Manufacturing: Does Plant Size Matter
April 1998
Working Paper Number:
CES-98-06
We use micro data for 10,412 U.S. manufacturing plants to estimate the degrees of factor substitution by industry and by plant size. We find that (1) capital, labor, energy and materials are substitutes in production, and (2) the degrees of substitution among inputs are quite similar across plant sizes in a majority of industries. Two important implications of these findings are that (1) small plants are typically as flexible as large plants in factor substitution; consequently, economic policies such energy conservation policies that result in rising energy prices would not cause negative effects on either large or small U.S. manufacturing plants; and (2) since energy and capital are found to be substitutes; the 1973 energy crisis is unlikely to be a significant factor contributing to the post 1973 productivity slowdown. of SubstitutionView Full Paper PDF
-
Working PaperCapital-Energy Substitution Revisted: New Evidence From Micro Data
April 1997
Working Paper Number:
CES-97-04
We use new micro data for 11,520 plants taken from the Census Bureau=s 1991 Manufacturing Energy Consumption Survey (MECS) and 1991 Annual Survey of Manufactures (ASM) to estimate elasticities of substitution between energy and capital. We found that energy and capital are substitutes. We also found that estimates of Allen elasticities of substitution -- which have been used as a standard measure of substitution -- are sensitive to varying data sets and levels of aggregation. In contrast, estimates of Morishima elasticities of substitution -- which are theoretically superior to the Allen elasticities -- are more robust (except when two-digit level data are used). The results support the views that (i) the Morishima elasticity is a better measure of factor substitution and (ii) micro data provide more accurate elasticity estimates than those obtained from aggregate data. Our findings appear to resolve the long-standing conflict among the estimates reported in the many previous studies regarding energy-capital substitution/complementarity.View Full Paper PDF
-
Working PaperThe Life Cycles of Industrial Plants
October 2001
Working Paper Number:
CES-01-10
The paper presents a dynamic programming model with multiple classes of capital goods to explain capital expenditures on existing plants over their lives. The empirical specification shows that the path of capital expenditures is explained by (a) complementarities between old and new capital goods, (b) the age of plants, (c) an index that captures the rate of technical change and (d) the labor intensiveness of a plant when it is newly born. The model is tested with Census data for roughly 6,000 manufacturing plants that were born after 1972.View Full Paper PDF
-
Working PaperIT Spending and Firm Productivity: Additional Evidence from the Manufacturing Sector
October 1999
Working Paper Number:
CES-99-10
The information systems (IS) "productivity paradox" is based on those studies that found little or no positive relationship between firm productivity and spending on IS. However, some earlier studies and one more recent study have found a positive relationship. Given the large amounts spent by organizations on information systems, it is important to understand the relationship between spending on IS and productivity. Beyond replicating positive results, an explanation is needed for the conflicting conclusions reached by these earlier studies. Data collected by the Bureau of the Census is analyzed to investigate the relationship between plant-level productivity and spending on IS. The relationship between productivity and spending on IS is investigated using assumptions and models similar to both studies with positive findings and studies with negative findings. First, the overall relationship is investigated across all manufacturing industries. Next, the relationship is investigated industry by industry. The analysis finds a positive relationship between plant-level productivity and spending on IS. The relationship is also shown to vary across industries. The conflicting results from earlier studies are explained by understanding the characteristics of the data analyzed in each study. A large enough sample size is needed to find the relatively smaller effect from IS spending as compared to other input spending included in the models. Because the relationship between productivity and IS spending varies across industries, industry mix is shown to be an important data characteristic that may have influenced prior results.View Full Paper PDF
-
Working PaperAcademic Science, Industrial R&D, and the Growth of Inputs
January 1993
Working Paper Number:
CES-93-01
This paper is a theoretical and empirical investigation of the connection between science, R&D, and the growth of capital. Studies of high technology industries and recent labor studies agree in assigning a large role to science and technology in the growth of human and physical capital, although direct tests of these relationships have not been carried out. This paper builds on the search approach to R&D of Evenson and Kislev (1976) to unravel the complex interactions between science, R&D, and factor markets suggested by these studies. In our theory lagged science increases the returns to R&D, so that scientific advance later feeds into growth of R&D. In turn, product quality improvements and price declines lead to the growth of industry by shifting out new product demand, perhaps at the expense of traditional industries. All this tends to be in favor of the human and physical capital used intensively by high technology industries. This is the source of the factor bias which is implicit in the growth of capital per head. Our empirical work overwhelmingly supports the contention that growth of labor skills and physical capital are linked to science and R&D. It also supports the strong sequencing of events that is a crucial feature of our model, first from science to R&D, and later to output and factor markets.View Full Paper PDF
-
Working PaperCollaborative Micro-productivity Project: Establishment-Level Productivity Dataset, 1972-2020
December 2023
Working Paper Number:
CES-23-65
We describe the process for building the Collaborative Micro-productivity Project (CMP) microdata and calculating establishment-level productivity numbers. The documentation is for version 7 and the data cover the years 1972-2020. These data have been used in numerous research papers and are used to create the experimental public-use data product Dispersion Statistics on Productivity (DiSP).View Full Paper PDF
-
Working PaperLearning By Doing And Competition In The Early Rayon Industry
February 1993
Working Paper Number:
CES-93-04
In this paper, I derive a structural econometric model of learning by doing from a dynamic oligopoly game. Unlike previous empirical models, this model is capable of testing hypotheses concerning both the technological nature and behavioral implications of learning. I estimate the model with firm level data from the early U.S. rayon industry. The empirical results show that there were considerable differences across firms in both proprietary and spillover learning. The results also indicate that two of the three firms took their rival's reactions into account when choosing their strategies.View Full Paper PDF
-
Working PaperIndustry Learning Environments and the Heterogeneity of Firm Performance
December 2006
Working Paper Number:
CES-06-29
This paper characterizes inter-industry heterogeneity in rates of learning-by-doing and examines how industry learning rates are connected with firm performance. Using data from the Census Bureau and Compustat, we measure the industry learning rate as the coefficient on cumulative output in a production function. We find that learning rates vary considerably among industries and are higher in industries with greater R&D, advertising, and capital intensity. More importantly, we find that higher rates of learning are associated with wider dispersion of Tobin's q and profitability among firms in the industry. Together, these findings suggest that learning intensity represents an important characteristic of the industry environment.View Full Paper PDF