This paper describes preliminary work with the LRD during our tenure at the Census Bureau as participants in the ASA/NSF/Census Research Program. The objective of the work described here were two-fold. First, we wanted to examine the suitableness of these data for the calculation of plant-level productivity indexes, following procedures typically implemented with time series data. Second, we wanted to select a small number of 2-digit industry groups that would be well suited to the estimation of production functions and systems of factor share equations and factor demand forecasting equations with system-wide techniques. This description of our initial work may be useful to other researchers who are interested in the LRD for the analysis of productivity growth and/or the estimation of systems of factor equations, because the specific results reported in this memo suggest that the data are of good quality, or because the nature of the tasks undertaken provides insight into issues that arise in the analysis of longitudinal establishment data.
-
Newly Recovered Microdata on U.S. Manufacturing Plants from the 1950s and 1960s: Some Early Glimpses
September 2011
Working Paper Number:
CES-11-29
Longitudinally-linked microdata on U.S. manufacturing plants are currently available to researchers for 1963, 1967, and 1972-2009. In this paper, we provide a first look at recently recovered manufacturing microdata files from the 1950s and 1960s. We describe their origins and background, discuss their contents, and begin to explore their sample coverage. We also begin to examine whether the available establishment identifier(s) allow record linking. Our preliminary analyses suggest that longitudinally-linked Annual Survey of Manufactures microdata from the mid-1950s through the present ' containing 16 years of additional data ' appears possible though challenging. While a great deal of work remains, we see tremendous value in extending the manufacturing microdata series back into time. With these data, new lines of research become possible and many others can be revisited.
View Full
Paper PDF
-
Collaborative Micro-productivity Project: Establishment-Level Productivity Dataset, 1972-2020
December 2023
Working Paper Number:
CES-23-65
We describe the process for building the Collaborative Micro-productivity Project (CMP) microdata and calculating establishment-level productivity numbers. The documentation is for version 7 and the data cover the years 1972-2020. These data have been used in numerous research papers and are used to create the experimental public-use data product Dispersion Statistics on Productivity (DiSP).
View Full
Paper PDF
-
The Life Cycles of Industrial Plants
October 2001
Working Paper Number:
CES-01-10
The paper presents a dynamic programming model with multiple classes of capital goods to explain capital expenditures on existing plants over their lives. The empirical specification shows that the path of capital expenditures is explained by (a) complementarities between old and new capital goods, (b) the age of plants, (c) an index that captures the rate of technical change and (d) the labor intensiveness of a plant when it is newly born. The model is tested with Census data for roughly 6,000 manufacturing plants that were born after 1972.
View Full
Paper PDF
-
The Structure Of Production Technology Productivity And Aggregation Effects
August 1991
Working Paper Number:
CES-91-05
This is a sequel to an earlier paper by the author, Dhrymes (1990). Using the LRD sample, that paper examined the adequacy of the functional form specifications commonly employed in the literature of US Manufacturing production relations. The "universe" of the investigation was the three digit product group; the basic unit of observation was the plant; the sample consisted of all "large" plants, defined by the criterion that they employ 250 or more workers. The study encompassed three digit product groups in industries 35, 36 and 38, over the period 1972-1986, and reached one major conclusion: if one were to judge the adequacy of a given specification by the parametric compatibility of the estimates of the same parameters, as derived from the various implications of each specification, then the three most popular (production function) specifications, Cobb-Douglas, CES and Translog all fell very wide of the mark. The current paper focuses the investigation on two digit industries (but retains the plant as the basic unit of observation), i.e., our sample consists of all "large" manufacturing plants, in each of Industry 35, 36 and 38, over the period 1972-1986. It first replicates the approach of the earlier paper; the results are basically of the same genre, and for that reason are not reported herein. Second, it examines the extent to which increasing returns to scale characterize production at the two digit level; it is established that returns to scale at the mean, in the case of the translog production function are almost identical to those obtained with the Cobb-Douglas function.1 Finally, it examines the robustness and characteristics of measures of productivity, obtained in the context of an econometric formulation and those obtained by the method of what may be thought of as the "Solow Residual" and generally designated as Total Factor Productivity (TFP). The major finding here is that while there are some differences in productivity behavior as established by these two procedures, by far more important is the aggregation sensitivity of productivity measures. Thus, in the context of a pooled sample, introduction of time effects (generally thought to refer to productivity shifts) are of very marginal consequence. On the other hand, the introduction of four digit industry effects is of appreciable consequence, and this phenomenon is universal, i.e., it is present in industry 35, 36 as well as 38. The suggestion that aggregate productivity behavior may be largely, or partly, an aggregation phenomenon is certainly not a part of the established literature. Another persistent phenomenon uncovered is the extent to which productivity measures for individual plants are volatile, while two digit aggregate measures appear to be stable. These findings clearly calls for further investigation.
View Full
Paper PDF
-
Issues and Challenges in Measuring Environmental Expenditures by U.S. Manufacturing: The Redevelopment of the PACE Survey
July 2007
Working Paper Number:
CES-07-20
The Pollution Abatement Costs and Expenditures (PACE) survey is the most comprehensive source of information on U.S. manufacturing's capital expenditures and operating costs associated with pollution abatement. In 2003, the U.S. Environmental Protection Agency began a significant initiative to redevelop the survey, guided by the advice of a multi-disciplinary workgroup consisting of economists, engineers, survey design experts, and experienced data users, in addition to incorporating feedback from key manufacturing industries. This paper describes some of these redevelopment efforts. Issues discussed include the approach to developing the new survey instrument, methods used to evaluate (and improve) its performance, innovations in sampling, and the special development and role of outside expertise. The completely redesigned PACE survey was first administered in early 2006.
View Full
Paper PDF
-
ENVIRONMENTAL REGULATION AND INDUSTRY EMPLOYMENT: A REASSESSMENT
July 2013
Working Paper Number:
CES-13-36
This paper examines the impact of environmental regulation on industry employment, using a structural model based on data from the Census Bureau's Pollution Abatement Costs and Expenditures Survey. This model was developed in an earlier paper (Morgenstern, Pizer, and Shih (2002) - MPS). We extend MPS by examining additional industries and additional years. We find widely varying estimates across industries, including many implausibly large positive employment effects. We explore several possible explanations for these results, without reaching a satisfactory conclusion. Our results call into question the frequent use of the average impacts estimated by MPS as a basis for calculating the quantitative impacts of new environmental regulations on employment.
View Full
Paper PDF
-
Decomposing Technical Change
May 1991
Working Paper Number:
CES-91-04
A production function is specified with human capital as a separate argument and with embodied technical change proxied by a variable that measures the average vintage of the stock of capital. The coefficients of this production function are estimated with cross section data for roughly 2,150 new manufacturing plants in 41 industries, and for subsets of this sample. The question of interactions between new investment and initial endowments of capital is then examined with data for roughly 1,400 old plants in 15 industries.
View Full
Paper PDF
-
Factor Substitution In U.S. Manufacturing: Does Plant Size Matter
April 1998
Working Paper Number:
CES-98-06
We use micro data for 10,412 U.S. manufacturing plants to estimate the degrees of factor substitution by industry and by plant size. We find that (1) capital, labor, energy and materials are substitutes in production, and (2) the degrees of substitution among inputs are quite similar across plant sizes in a majority of industries. Two important implications of these findings are that (1) small plants are typically as flexible as large plants in factor substitution; consequently, economic policies such energy conservation policies that result in rising energy prices would not cause negative effects on either large or small U.S. manufacturing plants; and (2) since energy and capital are found to be substitutes; the 1973 energy crisis is unlikely to be a significant factor contributing to the post 1973 productivity slowdown. of Substitution
View Full
Paper PDF
-
Returns to Scale in Small and Large U.S. Manufacturing Establishments
September 1990
Working Paper Number:
CES-90-11
The objective of this study is to assess the possibility of differences in the production technologies between large and small establishments in five selected 4-digit SIC manufacturing industries. We particularly focus on estimating returns to scale and then make interferences regarding the efficiency of small businesses relative to large businesses. Using cross-section data for two census years, 1977 and 1982, we estimate a transcendental logarithmic (translog) production model that provides direct estimates of economies of scale parameters for both small and large establishments. Our primary findings are: (i) there are significant differences in the production technologies between small and large establishments; and (ii) based on the scale parameter estimates, small establishments appear to be as efficient as large establishments under normal economic conditions, suggesting that large size is not a necessary condition for efficient production. However, small establishments seem to be unable to maintain constant returns to scale production during economic recession such as that in 1982.
View Full
Paper PDF
-
Estimating Capital Efficiency Schedules Within Production Functions
May 1992
Working Paper Number:
CES-92-04
The appropriate method for aggregating capital goods across vintages to produce a single capital stock measure has long been a contentious issue, and the literature covering this topic is quite extensive. This paper presents a methodology that estimates efficiency schedules within a production function, allowing the data to reveal how the efficiency of capital goods evolve as they age. Specifically we insert a parameterized investment stream into the position of a capital variable in a production function, and then estimate the parameters of the production function simultaneously with the parameters of the investment stream. Plant level panel data for a select group of steel plants employing a common technology are used to estimate the model. Our primary finding is that when using a simple Cobb Douglas production function, the estimated efficiency schedules appear to follow a geometric pattern, which is consistent with the estimates of economic depreciation of Hulten and Wykoff (1981). Results from more flexible functional forms produced much less precise and unreliable estimates.
View Full
Paper PDF