Micro and macro data integration should be an objective of economic measurement as it is clearly advantageous to have internally consistent measurement at all levels of aggregation ' firm, industry and aggregate. In spite of the apparently compelling arguments, there are few measures of business activity that achieve anything close to micro/macro data internal consistency. The measures of business activity that are arguably the worst on this dimension are capital stocks and flows. In this paper, we document, quantify and analyze the widely different approaches to the measurement of capital from the aggregate (top down) and micro (bottom up) perspectives. We find that recent developments in data collection permit improved integration of the top down and bottom up approaches. We develop a prototype hybrid method that exploits these data to improve micro/macro data internal consistency in a manner that could potentially lead to substantially improved measures of capital stocks and flows at the industry level. We also explore the properties of the micro distribution of investment. In spite of substantial data and associated measurement limitations, we show that the micro distributions of investment exhibit properties that are of interest to both micro and macro analysts of investment behavior. These findings help highlight some of the potential benefits of micro/macro data integration.
-
Issues and Challenges in Measuring Environmental Expenditures by U.S. Manufacturing: The Redevelopment of the PACE Survey
July 2007
Working Paper Number:
CES-07-20
The Pollution Abatement Costs and Expenditures (PACE) survey is the most comprehensive source of information on U.S. manufacturing's capital expenditures and operating costs associated with pollution abatement. In 2003, the U.S. Environmental Protection Agency began a significant initiative to redevelop the survey, guided by the advice of a multi-disciplinary workgroup consisting of economists, engineers, survey design experts, and experienced data users, in addition to incorporating feedback from key manufacturing industries. This paper describes some of these redevelopment efforts. Issues discussed include the approach to developing the new survey instrument, methods used to evaluate (and improve) its performance, innovations in sampling, and the special development and role of outside expertise. The completely redesigned PACE survey was first administered in early 2006.
View Full
Paper PDF
-
Investment Behavior of U.S. Firms Over Heterogenous Capital Goods: A Snapshot
December 2004
Working Paper Number:
CES-04-19
Recent research has indicated that investment in certain capital types, such as computers, has fostered accelerated productivity growth and enabled a fundamental reorganization of the workplace. However, remarkably little is known about the composition of investment at the micro level. This paper takes an important first step in filling this knowledge gap by looking at the newly available micro data from the 1998 Annual Capital Expenditure Survey (ACES), a sample of roughly 30,000 firms drawn from the private, nonfarm economy. The paper establishes a number of stylized facts. Among other things, I find that in contrast to aggregate data the typical firm tends to concentrate its capital expenditures in a very limited number of capital types, though which types are chosen varies greatly from firm to firm. In addition, computers account for a significantly larger share of firms' incremental investment than they do of lumpy investment.
View Full
Paper PDF
-
Dispersion in Dispersion: Measuring Establishment-Level Differences in Productivity
April 2018
Working Paper Number:
CES-18-25RR
We describe new experimental productivity statistics, Dispersion Statistics on Productivity (DiSP), jointly developed and published by the Bureau of Labor Statistics (BLS) and the Census Bureau. Productivity measures are critical for understanding economic performance. Official BLS productivity statistics, which are available for major sectors and detailed industries, provide information on the sources of aggregate productivity growth. A large body of research shows that within-industry variation in productivity provides important insights into productivity dynamics. This research reveals large and persistent productivity differences across businesses even within narrowly defined industries. These differences vary across industries and over time and are related to productivity-enhancing reallocation. Dispersion in productivity across businesses can provide information about the nature of competition and frictions within sectors, and about the sources of rising wage inequality across businesses. Because there were no official statistics providing this level of detail, BLS and the Census Bureau partnered to create measures of within-industry productivity dispersion. These measures complement official BLS aggregate and industry-level productivity growth statistics and thereby improve our understanding of the rich productivity dynamics in the U.S. economy. The underlying microdata for these measures are available for use by qualified researchers on approved projects in the Federal Statistical Research Data Center (FSRDC) network. These new statistics confirm the presence of large productivity differences and we hope that these new data products will encourage further research into understanding these differences.
View Full
Paper PDF
-
Re-engineering Key National Economic Indicators
July 2019
Working Paper Number:
CES-19-22
Traditional methods of collecting data from businesses and households face increasing challenges. These include declining response rates to surveys, increasing costs to traditional modes of data collection, and the difficulty of keeping pace with rapid changes in the economy. The digitization of virtually all market transactions offers the potential for re-engineering key national economic indicators. The challenge for the statistical system is how to operate in this data-rich environment. This paper focuses on the opportunities for collecting item-level data at the source and constructing key indicators using measurement methods consistent with such a data infrastructure. Ubiquitous digitization of transactions allows price and quantity be collected or aggregated simultaneously at the source. This new architecture for economic statistics creates challenges arising from the rapid change in items sold. The paper explores some recently proposed techniques for estimating price and quantity indices in large scale item-level data. Although those methods display tremendous promise, substantially more research is necessary before they will be ready to serve as the basis for the official economic statistics. Finally, the paper addresses implications for building national statistics from transactions for data collection and for the capabilities and organization of the statistical agencies in the 21st century.
View Full
Paper PDF
-
High Growth Young Firms: Contribution to Job, Output and Productivity Growth
February 2017
Working Paper Number:
carra-2017-03
Recent research shows that the job creating prowess of small firms in the U.S. is better attributed to startups and young firms that are small. But most startups and young firms either fail or don't create jobs. A small proportion of young firms grow rapidly and they account for the long lasting contribution of startups to job growth. High growth firms are not well understood in terms of either theory or evidence. Although the evidence of their role in job creation is mounting, little is known about their life cycle dynamics, or their contribution to other key outcomes such as real output growth and productivity. In this paper, we enhance the Longitudinal Business Database with gross output (real revenue) measures. We find that the patterns for high output growth firms largely mimic those for high employment growth firms. High growth output firms are disproportionately young and make disproportionate contributions to output and productivity growth. The share of activity accounted for by high growth output and employment firms varies substantially across industries - in the post 2000 period the share of activity accounted for by high growth firms is significantly higher in the High Tech and Energy related industries. A firm in a small business intensive industry is less likely to be a high output growth firm but small business intensive industries don't have significantly smaller shares of either employment or output activity accounted for by high growth firms.
View Full
Paper PDF
-
High Growth Young Firms: Contribution to Job, Output and Productivity Growth
January 2016
Working Paper Number:
CES-16-49
Recent research shows that the job creating prowess of small firms in the U.S. is better attributed to startups and young firms that are small. But most startups and young firms either fail or don't create jobs. A small proportion of young firms grow rapidly and they account for the long lasting contribution of startups to job growth. High growth firms are not well understood in terms of either theory or evidence. Although the evidence of their role in job creation is mounting, little is known about their life cycle dynamics, or their contribution to other key outcomes such as real output growth and productivity. In this paper, we enhance the Longitudinal Business Database with gross output (real revenue) measures. We find that the patterns for high output growth firms largely mimic those for high employment growth firms. High growth output firms are disproportionately young and make disproportionate contributions to output and productivity growth. The share of activity accounted for by high growth output and employment firms varies substantially across industries ' in the post 2000 period the share of activity accounted for by high growth firms is significantly higher in the High Tech and Energy related industries. A firm in a small business intensive industry is less likely to be a high output growth firm but small business intensive industries don't have significantly smaller shares of either employment or output activity accounted for by high growth firms.
View Full
Paper PDF
-
Aggregate Productivity Growth: Lessons From Microeconomic Evidence
September 1998
Working Paper Number:
CES-98-12
In this study we focus on the role of the reallocation of activity across individual producers for aggregate productivity growth. A growing body of empirical analysis yields striking patterns in the behavior of establishment-level reallocation and productivity. Nevertheless, a review of existing studies yields a wide range of findings regarding the contribution of reallocation to aggregate productivity growth. Through our review of existing studies and our own sensitivity analysis, we find that reallocation plays a significant role in the changes in productivity growth at the industry level and that the impact of net entry is disproportionate since entering plants tend to displace less productive exiting plants, even after controlling for overall average growth in productivity. However, an important conclusion of our sensitivity analysis is that the quantitative contribution of reallocation to the aggregate change in productivity is sensitive to the decomposition methodology employed. Our findings also confirm and extend others in the literature that indicate that both learning and selection effects are important in this context. A novel aspect of our analysis is that we have examined the role of reallocation for aggregate productivity growth to a selected set of service sector industries. Our analysis considers the 4-digit industries that form the 3-digit industry automobile repair shops. We found tremendous churning in this industry with extremely large rates of entry and exit. Moreover, we found that productivity growth in the industry is dominated establishment data at Census, the results are quite striking and clearly call for further analysis.
View Full
Paper PDF
-
Published Versus Sample Statistics From The ASM: Implications For The LRD
January 1991
Working Paper Number:
CES-91-01
In principle, the Longitudinal Research Database ( LRD ) which links the establishments in the Annual Survey of Manufactures (ASM) is ideal for examining the dynamics of firm and aggregate behavior. However, the published ASM aggregates are not simply the appropriately weighted sums of establishment data in the LRD . Instead, the published data equal the sum of LRD-based sample estimates and nonsample estimates. The latter reflect adjustments related to sampling error and the imputation of small-establishment data. Differences between the LRD and the ASM raise questions for users of both data sets. For ASM users, time-series variation in the difference indicates potential problems in consistently and reliably estimating the nonsample portion of the ASM. For LRD users, potential sample selection problems arise due to the systematic exclusion of data from small establishments. Microeconomic studies based on the LRD can yield misleading inferences to the extent that small establishments behave differently. Similarly, new economic aggregates constructed from the LRD can yield incorrect estimates of levels and growth rates. This paper documents cross-sectional and time-series differences between ASM and LRD estimates of levels and growth rates of total employment, and compares them with employment estimates provided by Bureau of Labor Statistics and County Business Patterns data. In addition, this paper explores potential adjustments to economic aggregates constructed from the LRD. In particular, the paper reports the results of adjusting LRD-based estimates of gross job creation and destruction to be consistent with net job changes implied by the published ASM figures.
View Full
Paper PDF
-
The Link Between Aggregate and Micro Productivity Growth: Evidence from Retail Trade
August 2002
Working Paper Number:
CES-02-18
Understanding the nature and magnitude of resource reallocation, particularly as it relates to productivity growth, is important both because it affects how we model and interpret aggregate productivity dynamics, and also because market structure and institutions may affect the reallocation's magnitude and efficiency. Most evidence to date on the connection between reallocation and productivity dynamics for the U.S. and other countries comes from a single industry: manufacturing. Building upon a unique establishment-level data set of U.S. retail trade businesses, we provide some of the first evidence on the connection between reallocation and productivity dynamics in a non-manufacturing sector. Retail trade is a particularly appropriate subject for such a study since this large industry lies at the heart of many recent technological advances, such as E-commerce and advanced inventory controls. Our results show that virtually all of the productivity growth in the U.S. retail trade sector over the 1990s is accounted for by more productive entering establishments displacing much less productive exiting establishments. Interestingly, much of the between-establishment reallocation is a within, rather than betweenfirm phenomenon.
View Full
Paper PDF
-
Why Do Firms Own Production Chains?
September 2009
Working Paper Number:
CES-09-31
Many firms own links of production chains--i.e., they own both upstream and downstream plants in vertically linked industries. We use broad-based yet detailed data from the economy's goods-producing sectors to investigate the reasons for such vertical ownership. It does not appear that vertical ownership is usually used to facilitate transfers of goods along the production chain, as is often presumed. Shipments from firms' upstream units to their downstream units are surprisingly low, relative to both the firms' total upstream production and their downstream needs. Roughly one-third of upstream plants report no shipments to their firms' downstream units. Half ship less than three percent of their output internally. We do find that manufacturing plants in vertical ownership structures have high measures of 'type' (productivity, size, and capital intensity). These patterns primarily reflect selective sorting of high plant types into large firms; once we account for firm size, vertical structure per se matters much less. We propose an alternative explanation for vertical ownership that is consistent with these results. Namely, that rather than moderating goods transfers down production chains, it instead allows more efficient transfers of intangible inputs (e.g., managerial oversight) within the firm. We document some suggestive evidence of this mechanism.
View Full
Paper PDF