EXPANDING THE ROLE OF SYNTHETIC DATA AT THE U.S. CENSUS BUREAU
February 2014
Working Paper Number:
CES-14-10
Abstract
Document Tags and Keywords
Keywords
Keywords are automatically generated using KeyBERT, a powerful and innovative
keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant
keywords.
By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the
text, highlighting the most significant topics and trends. This approach not only enhances searchability but
provides connections that go beyond potentially domain-specific author-defined keywords.
:
statistical,
data,
data census,
microdata,
database,
agency,
respondent,
aggregate,
disclosure,
survey data,
confidentiality,
statistical agencies,
information,
statistician,
record,
federal,
sample,
datasets,
public,
publicly
Tags
Tags are automatically generated using a pretrained language model from spaCy, which excels at
several tasks, including entity tagging.
The model is able to label words and phrases by part-of-speech,
including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are
identified to contain references to specific institutions, datasets, and other organizations.
:
National Science Foundation,
Internal Revenue Service,
Social Security Administration,
Center for Economic Studies,
Longitudinal Business Database,
Survey of Income and Program Participation,
Research Data Center,
American Community Survey,
Duke University,
Business Dynamics Statistics
Similar Working Papers
Similarity between working papers are determined by an unsupervised neural
network model
know as Doc2Vec.
Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the
capture of semantic meaning in a way that relates to the context of words within the document. The model learns to
associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as
document classification, clustering, and similarity detection by preserving the order and structure of words. The
document vectors are compared using cosine similarity/distance to determine the most similar working papers.
Papers identified with 🔥 are in the top 20% of similarity.
The 10 most similar working papers to the working paper 'EXPANDING THE ROLE OF SYNTHETIC DATA AT THE U.S. CENSUS BUREAU' are listed below in order of similarity.
-
Working PaperLOOKING BACK ON THREE YEARS OF USING THE SYNTHETIC LBD BETA🔥
February 2014
Working Paper Number:
CES-14-11
Distributions of business data are typically much more skewed than those for household or individual data and public knowledge of the underlying units is greater. As a results, national statistical offices (NSOs) rarely release establishment or firm-level business microdata due to the risk to respondent confidentiality. One potential approach for overcoming these risks is to release synthetic data where the establishment data are simulated from statistical models designed to mimic the distributions of the real underlying microdata. The US Census Bureau's Center for Economic Studies in collaboration with Duke University, the National Institute of Statistical Sciences, and Cornell University made available a synthetic public use file for the Longitudinal Business Database (LBD) comprising more than 20 million records for all business establishment with paid employees dating back to 1976. The resulting product, dubbed the SynLBD, was released in 2010 and is the first-ever comprehensive business microdata set publicly released in the United States including data on establishments employment and payroll, birth and death years, and industrial classification. This pa- per documents the scope of projects that have requested and used the SynLBD.View Full Paper PDF
-
Working PaperResolving the Tension Between Access and Confidentiality: Past Experience and Future Plans at the U.S. Census Bureau🔥
September 2009
Working Paper Number:
CES-09-33
This paper provides an historical context for access to U.S. Federal statistical data with a primary focus on the U.S. Census Bureau. We review the various modes used by the Census Bureau to make data available to users, and highlight the costs and benefits associated with each. We highlight some of the specific improvements underway or under consideration at the Census Bureau to better serve its data users, as well as discuss the broad strategies employed by statistical agencies to respond to the challenges of data access.View Full Paper PDF
-
Working PaperAccess Methods for United States Microdata
August 2007
Working Paper Number:
CES-07-25
Beyond the traditional methods of tabulations and public-use microdata samples, statistical agencies have developed four key alternatives for providing non-government researchers with access to confidential microdata to improve statistical modeling. The first, licensing, allows qualified researchers access to confidential microdata at their own facilities, provided certain security requirements are met. The second, statistical data enclaves, offer qualified researchers restricted access to confidential economic and demographic data at specific agency-controlled locations. Third, statistical agencies can offer remote access, through a computer interface, to the confidential data under automated or manual controls. Fourth, synthetic data developed from the original data but retaining the correlations in the original data have the potential for allowing a wide range of analyses.View Full Paper PDF
-
Working PaperTowards Unrestricted Public Use Business Microdata: The Synthetic Longitudinal Business Database
February 2011
Working Paper Number:
CES-11-04
In most countries, national statistical agencies do not release establishment-level business microdata, because doing so represents too large a risk to establishments\' confidentiality. One approach with the potential for overcoming these risks is to release synthetic data; that is, the released establishment data are simulated from statistical models designed to mimic the distributions of the underlying real microdata. In this article, we describe an application of this strategy to create a public use file for the Longitudinal Business Database, an annual economic census of establishments in the United States comprising more than 20 million records dating back to 1976. The U.S. Bureau of the Census and the Internal Revenue Service recently approved the release of these synthetic microdata for public use, making the synthetic Longitudinal Business Database the first-ever business microdata set publicly released in the United States. We describe how we created the synthetic data, evaluated analytical validity, and assessed disclosure risk.View Full Paper PDF
-
Working PaperEffects of a Government-Academic Partnership: Has the NSF-Census Bureau Research Network Helped Improve the U.S. Statistical System?
January 2017
Working Paper Number:
CES-17-59R
The National Science Foundation-Census Bureau Research Network (NCRN) was established in 2011 to create interdisciplinary research nodes on methodological questions of interest and significance to the broader research community and to the Federal Statistical System (FSS), particularly the Census Bureau. The activities to date have covered both fundamental and applied statistical research and have focused at least in part on the training of current and future generations of researchers in skills of relevance to surveys and alternative measurement of economic units, households, and persons. This paper discusses some of the key research findings of the eight nodes, organized into six topics: (1) Improving census and survey data collection methods; (2) Using alternative sources of data; (3) Protecting privacy and confidentiality by improving disclosure avoidance; (4) Using spatial and spatio-temporal statistical modeling to improve estimates; (5) Assessing data cost and quality tradeoffs; and (6) Combining information from multiple sources. It also reports on collaborations across nodes and with federal agencies, new software developed, and educational activities and outcomes. The paper concludes with an evaluation of the ability of the FSS to apply the NCRN's research outcomes and suggests some next steps, as well as the implications of this research-network model for future federal government renewal initiatives.View Full Paper PDF
-
Working PaperUsing Partially Synthetic Microdata to Protect Sensitive Cells in Business Statistics
February 2016
Working Paper Number:
CES-16-10
We describe and analyze a method that blends records from both observed and synthetic microdata into public-use tabulations on establishment statistics. The resulting tables use synthetic data only in potentially sensitive cells. We describe different algorithms, and present preliminary results when applied to the Census Bureau's Business Dynamics Statistics and Synthetic Longitudinal Business Database, highlighting accuracy and protection afforded by the method when compared to existing public-use tabulations (with suppressions).View Full Paper PDF
-
Working PaperDistribution Preserving Statistical Disclosure Limitation
September 2006
Working Paper Number:
tp-2006-04
One approach to limiting disclosure risk in public-use microdata is to release multiply-imputed, partially synthetic data sets. These are data on actual respondents, but with confidential data replaced by multiply-imputed synthetic values. A mis-specified imputation model can invalidate inferences because the distribution of synthetic data is completely determined by the model used to generate them. We present two practical methods of generating synthetic values when the imputer has only limited information about the true data generating process. One is applicable when the true likelihood is known up to a monotone transformation. The second requires only limited knowledge of the true likelihood, but nevertheless preserves the conditional distribution of the confidential data, up to sampling error, on arbitrary subdomains. Our method maximizes data utility and minimizes incremental disclosure risk up to posterior uncertainty in the imputation model and sampling error in the estimated transformation. We validate the approach with a simulation and application to a large linked employer-employee database.View Full Paper PDF
-
Working PaperSynthetic Data and Confidentiality Protection
September 2003
Working Paper Number:
tp-2003-10
-
Working PaperNew Approaches to Confidentiality Protection Synthetic Data, Remote Access and Research Data Centers
June 2004
Working Paper Number:
tp-2004-03
-
Working PaperA FIRST STEP TOWARDS A GERMAN SYNLBD: CONSTRUCTING A GERMAN LONGITUDINAL BUSINESS DATABASE
February 2014
Working Paper Number:
CES-14-13
One major criticism against the use of synthetic data has been that the efforts necessary to generate useful synthetic data are so in- tense that many statistical agencies cannot afford them. We argue many lessons in this evolving field have been learned in the early years of synthetic data generation, and can be used in the development of new synthetic data products, considerably reducing the required in- vestments. The final goal of the project described in this paper will be to evaluate whether synthetic data algorithms developed in the U.S. to generate a synthetic version of the Longitudinal Business Database (LBD) can easily be transferred to generate a similar data product for other countries. We construct a German data product with infor- mation comparable to the LBD - the German Longitudinal Business Database (GLBD) - that is generated from different administrative sources at the Institute for Employment Research, Germany. In a fu- ture step, the algorithms developed for the synthesis of the LBD will be applied to the GLBD. Extensive evaluations will illustrate whether the algorithms provide useful synthetic data without further adjustment. The ultimate goal of the project is to provide access to multiple synthetic datasets similar to the SynLBD at Cornell to enable comparative studies between countries. The Synthetic GLBD is a first step towards that goal.View Full Paper PDF