CREAT: Census Research Exploration and Analysis Tool

Improving Estimates of Neighborhood Change with Constant Tract Boundaries

May 2022

Working Paper Number:

CES-22-16

Abstract

Social scientists routinely rely on methods of interpolation to adjust available data to their research needs. This study calls attention to the potential for substantial error in efforts to harmonize data to constant boundaries using standard approaches to areal and population interpolation. We compare estimates from a standard source (the Longitudinal Tract Data Base) to true values calculated by re-aggregating original 2000 census microdata to 2010 tract areas. We then demonstrate an alternative approach that allows the re-aggregated values to be publicly disclosed, using 'differential privacy' (DP) methods to inject random noise to protect confidentiality of the raw data. The DP estimates are considerably more accurate than the interpolated estimates. We also examine conditions under which interpolation is more susceptible to error. This study reveals cause for greater caution in the use of interpolated estimates from any source. Until and unless DP estimates can be publicly disclosed for a wide range of variables and years, research on neighborhood change should routinely examine data for signs of estimation error that may be substantial in a large share of tracts that experienced complex boundary changes.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
estimation, estimating, data, statistical, data census, census data, microdata, respondent, confidentiality, estimator, regression, privacy, unobserved, socioeconomic, neighborhood, use census, resident, disparity, 2010 census, census records

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Urban Institute, Research Data Center, Geographic Information Systems, American Community Survey, National Institutes of Health, Census Bureau Disclosure Review Board, 2010 Census, Federal Statistical Research Data Center

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Improving Estimates of Neighborhood Change with Constant Tract Boundaries' are listed below in order of similarity.