This paper introduces the Gridded Environmental Impacts Frame (Gridded EIF), a novel privacy-protected dataset derived from the U.S. Census Bureau's confidential Environmental Impacts Frame (EIF) microdata infrastructure. The EIF combines comprehensive administrative records and survey data on the U.S. population with high-resolution geospatial information on environmental hazards. While access to the EIF is restricted due to the confidential nature of the underlying data, the Gridded EIF offers a broader research community the opportunity to glean insights from the data while preserving confidentiality. We describe the data and privacy protection process, and offer guidance on appropriate usage, presenting practical applications.
-
Building the Prototype Census Environmental Impacts Frame
April 2023
Working Paper Number:
CES-23-20
The natural environment is central to all aspects of life, but efforts to quantify its influence have been hindered by data availability and measurement constraints. To mitigate some of these challenges, we introduce a new prototype of a microdata infras tructure: the Census Environmental Impacts Frame (EIF). The EIF provides detailed individual-level information on demographics, economic characteristics, and address level histories ' linked to spatially and temporally resolved estimates of environmental conditions for each individual ' for almost every resident in the United States over the past two decades. This linked microdata infrastructure provides a unique platform for advancing our understanding about the distribution of environmental amenities and hazards, when, how, and why exposures have evolved over time, and the consequences of environmental inequality and changing environmental conditions. We describe the construction of the EIF, explore issues of coverage and data quality, document patterns and trends in individual exposure to two correlated but distinct air pollutants as an application of the EIF, and discuss implications and opportunities for future research.
View Full
Paper PDF
-
The Census Historical Environmental Impacts Frame
October 2024
Working Paper Number:
CES-24-66
The Census Bureau's Environmental Impacts Frame (EIF) is a microdata infrastructure that combines individual-level information on residence, demographics, and economic characteristics with environmental amenities and hazards from 1999 through the present day. To better understand the long-run consequences and intergenerational effects of exposure to a changing environment, we expand the EIF by extending it backward to 1940. The Historical Environmental Impacts Frame (HEIF) combines the Census Bureau's historical administrative data, publicly available 1940 address information from the 1940 Decennial Census, and historical environmental data. This paper discusses the creation of the HEIF as well as the unique challenges that arise with using the Census Bureau's historical administrative data.
View Full
Paper PDF
-
Income, Wealth, and Environmental Inequality in the United States
October 2024
Working Paper Number:
CES-24-57
This paper explores the relationships between air pollution, income, wealth, and race by combining administrative data from U.S. tax returns between 1979'2016, various measures of air pollution, and sociodemographic information from linked survey and administrative data. In the first year of our data, the relationship between income and ambient pollution levels nationally is approximately zero for both non-Hispanic White and Black individuals. However, at every single percentile of the national income distribution, Black individuals are exposed to, on average, higher levels of pollution than White individuals. By 2016, the relationship between income and air pollution had steepened, primarily for Black individuals, driven by changes in where rich and poor Black individuals live. We utilize quasi-random shocks to income to examine the causal effect of changes in income and wealth on pollution exposure over a five year horizon, finding that these income'pollution elasticities map closely to the values implied by our descriptive patterns. We calculate that Black-White differences in income can explain ~10 percent of the observed gap in air pollution levels in 2016.
View Full
Paper PDF
-
Longitudinal Environmental Inequality and Environmental Gentrification: Who Gains From Cleaner Air?
May 2017
Working Paper Number:
carra-2017-04
A vast empirical literature has convincingly shown that there is pervasive cross-sectional inequality in exposure to environmental hazards. However, less is known about how these inequalities have been evolving over time. I fill this gap by creating a new dataset, which combines satellite data on ground-level concentrations of fine particulate matter with linked administrative and survey data. This linked dataset allows me to measure individual pollution exposure for over 100 million individuals in each year between 2000 and 2014, a period of time has seen substantial improvements in average air quality. This rich dataset can then be used to analyze longitudinal dimensions of environmental inequality by examining the distribution of changes in individual pollution exposure that underlie these aggregate improvements. I confirm previous findings that cross-sectional environmental inequality has been on the decline, but I argue that this may miss longitudinal patterns in exposure that are consistent with environmental gentrification. I find that advantaged individuals at the beginning of the sample experience larger pollution exposure reductions than do initially disadvantaged individuals.
View Full
Paper PDF
-
Mobility, Opportunity, and Volatility Statistics (MOVS):
Infrastructure Files and Public Use Data
April 2024
Working Paper Number:
CES-24-23
Federal statistical agencies and policymakers have identified a need for integrated systems of household and personal income statistics. This interest marks a recognition that aggregated measures of income, such as GDP or average income growth, tell an incomplete story that may conceal large gaps in well-being between different types of individuals and families. Until recently, longitudinal income data that are rich enough to calculate detailed income statistics and include demographic characteristics, such as race and ethnicity, have not been available. The Mobility, Opportunity, and Volatility Statistics project (MOVS) fills this gap in comprehensive income statistics. Using linked demographic and tax records on the population of U.S. working-age adults, the MOVS project defines households and calculates household income, applying an equivalence scale to create a personal income concept, and then traces the progress of individuals' incomes over time. We then output a set of intermediate statistics by race-ethnicity group, sex, year, base-year state of residence, and base-year income decile. We select the intermediate statistics most useful in developing more complex intragenerational income mobility measures, such as transition matrices, income growth curves, and variance-based volatility statistics. We provide these intermediate statistics as part of a publicly released data tool with downloadable flat files and accompanying documentation. This paper describes the data build process and the output files, including a brief analysis highlighting the structure and content of our main statistics.
View Full
Paper PDF
-
Structural versus Ethnic Dimensions of Housing Segregation
March 2016
Working Paper Number:
CES-16-22
Racial residential segregation is still very high in many American cities. Some portion of segregation is attributable to socioeconomic differences across racial lines; some portion is caused by purely racial factors, such as preferences about the racial composition of one's neighborhood or discrimination in the housing market. Social scientists have had great difficulty disaggregating segregation into a portion that can be explained by interracial differences in socioeconomic characteristics (what we call structural factors) versus a portion attributable to racial and ethnic factors. What would such a measure look like? In this paper, we draw on a new source of data to develop an innovative structural segregation measure that shows the amount of segregation that would remain if we could assign households to housing units based only on non-racial socioeconomic characteristics. This inquiry provides vital building blocks for the broader enterprise of understanding and remedying housing segregation.
View Full
Paper PDF
-
Improving Estimates of Neighborhood Change with Constant Tract Boundaries
May 2022
Working Paper Number:
CES-22-16
Social scientists routinely rely on methods of interpolation to adjust available data to their research needs. This study calls attention to the potential for substantial error in efforts to harmonize data to constant boundaries using standard approaches to areal and population interpolation. We compare estimates from a standard source (the Longitudinal Tract Data Base) to true values calculated by re-aggregating original 2000 census microdata to 2010 tract areas. We then demonstrate an alternative approach that allows the re-aggregated values to be publicly disclosed, using 'differential privacy' (DP) methods to inject random noise to protect confidentiality of the raw data. The DP estimates are considerably more accurate than the interpolated estimates. We also examine conditions under which interpolation is more susceptible to error. This study reveals cause for greater caution in the use of interpolated estimates from any source. Until and unless DP estimates can be publicly disclosed for a wide range of variables and years, research on neighborhood change should routinely examine data for signs of estimation error that may be substantial in a large share of tracts that experienced complex boundary changes.
View Full
Paper PDF
-
The Changing Nature of Pollution, Income, and Environmental Inequality in the United States
January 2024
Working Paper Number:
CES-24-04
This paper uses administrative tax records linked to Census demographic data and high-resolution measures of fine small particulate (PM2.5) exposure to study the evolution of the Black-White pollution exposure gap over the past 40 years. In doing so, we focus on the various ways in which income may have contributed to these changes using a statistical decomposition. We decompose the overall change in the Black-White PM2.5 exposure gap into (1) components that stem from rank-preserving compression in the overall pollution distribution and (2) changes that stem from a reordering of Black and White households within the pollution distribution. We find a significant narrowing of the Black-White PM2.5 exposure gap over this time period that is overwhelmingly driven by rank-preserving changes rather than positional changes. However, the relative positions of Black and White households at the upper end of the pollution distribution have meaningfully shifted in the most recent years.
View Full
Paper PDF
-
What Caused Racial Disparities in Particulate Exposure to Fall? New Evidence from the Clean Air Act and Satellite-Based Measures of Air Quality
January 2020
Working Paper Number:
CES-20-02
Racial differences in exposure to ambient air pollution have declined significantly in the United States over the past 20 years. This project links restricted-access Census Bureau microdata to newly available, spatially continuous high resolution measures of ambient particulate pollution (PM2.5) to examine the underlying causes and consequences of differences in black-white pollution exposures. We begin by decomposing differences in pollution exposure into components explained by observable population characteristics (e.g., income) versus those that remain unexplained. We then use quantile regression methods to show that a significant portion of the 'unexplained' convergence in black-white pollution exposure can be attributed to differential impacts of the Clean Air Act (CAA) in non-Hispanic African American and non-Hispanic white communities. Areas with larger black populations saw greater CAA-related declines in PM2.5 exposure. We show that the CAA has been the single largest contributor to racial convergence in PM2.5 pollution exposure in the U.S. since 2000 accounting for over 60 percent of the reduction.
View Full
Paper PDF
-
Why the Economics Profession Must Actively Participate in the Privacy Protection Debate
March 2019
Working Paper Number:
CES-19-09
When Google or the U.S. Census Bureau publish detailed statistics on browsing habits or neighborhood characteristics, some privacy is lost for everybody while supplying public information. To date, economists have not focused on the privacy loss inherent in data publication. In their stead, these issues have been advanced almost exclusively by computer scientists who are primarily interested in technical problems associated with protecting privacy. Economists should join the discussion, first, to determine where to balance privacy protection against data quality; a social choice problem. Furthermore, economists must ensure new privacy models preserve the validity of public data for economic research.
View Full
Paper PDF