CREAT: Census Research Exploration and Analysis Tool

Papers Containing Tag(s): 'Health and Retirement Study'

The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
Click here to search again

Frequently Occurring Concepts within this Search

Viewing papers 1 through 10 of 17


  • Working Paper

    Education and Mortality: Evidence for the Silent Generation from Linked Census and Administrative Data

    August 2025

    Working Paper Number:

    CES-25-56

    We quantify the effect of education on mortality using a linkage of the full count 1940, 2000, and 2010 US census files and the Numident death records file. Our sample is composed of children aged 0-18 in 1940, observed living with at least one parent, for whom we can construct a rich set of parental and neighborhood characteristics. We estimate effects of educational attainment in 1940 on survival to 2000, as well as the effects of completed education, observed in 2000, on 10-year survival to 2010. The educational gradients in longevity that we estimate are robust to the inclusion of detailed individual, parental, household, neighborhood and county covariates. Given our full population census sample, we also explore rich patterns of heterogeneity and examine the effect of mediators of the education-mortality relationship. The mediators we consider in this study explain more than half of the relationship between education and mortality. We further show that the mechanisms underlying the education-mortality gradient might be different at different margins of educational attainment.
    View Full Paper PDF
  • Working Paper

    Differences in Disability Insurance Allowance Rates

    August 2025

    Working Paper Number:

    CES-25-54

    Allowance rates for disability insurance applications vary by race and ethnicity, but it is unclear to what extent these differences are artifacts of other differing socio-economic and health characteristics, or selection issues in SSA's race and ethnicity data. This paper uses the 2015 American Community Survey linked to 2015-2019 SSA administrative data to investigate DI application allowance rates among non-Hispanic White, non-Hispanic Black, non-Hispanic Asian, non-Hispanic American Indian/Alaska Native, and Hispanic applicants aged 25-65. The analysis uses regression, propensity score matching, and inverse probability weighting to estimate differences in allowance rates among applicants who are similar on observable characteristics. Relative to raw comparisons, differences by race and ethnicity in multivariate analyses are substantially smaller in magnitude and are generally not statistically significant.
    View Full Paper PDF
  • Working Paper

    Tapping Business and Household Surveys to Sharpen Our View of Work from Home

    June 2025

    Working Paper Number:

    CES-25-36

    Timely business-level measures of work from home (WFH) are scarce for the U.S. economy. We review prior survey-based efforts to quantify the incidence and character of WFH and describe new questions that we developed and fielded for the Business Trends and Outlook Survey (BTOS). Drawing on more than 150,000 firm-level responses to the BTOS, we obtain four main findings. First, nearly a third of businesses have employees who work from home, with tremendous variation across sectors. The share of businesses with WFH employees is nearly ten times larger in the Information sector than in Accommodation and Food Services. Second, employees work from home about 1 day per week, on average, and businesses expect similar WFH levels in five years. Third, feasibility aside, businesses' largest concern with WFH relates to productivity. Seven percent of businesses find that onsite work is more productive, while two percent find that WFH is more productive. Fourth, there is a low level of tracking and monitoring of WFH activities, with 70% of firms reporting they do not track employee days in the office and 75% reporting they do not monitor employees when they work from home. These lessons serve as a starting point for enhancing WFH-related content in the American Community Survey and other household surveys.
    View Full Paper PDF
  • Working Paper

    Geographic Immobility in the United States: Assessing the Prevalence and Characteristics of Those Who Never Migrate Across State Lines Using Linked Federal Tax Microdata

    March 2025

    Working Paper Number:

    CES-25-19

    This paper explores the prevalence and characteristics of those who never migrate at the state scale in the U.S. Studying people who never migrate requires regular and frequent observation of their residential location for a lifetime, or at least for many years. A novel U.S. population-sized longitudinal dataset that links individual level Internal Revenue Service (IRS) and Social Security Administration (SSA) administrative records supplies this information annually, along with information on income and socio-demographic characteristics. We use these administrative microdata to follow a cohort aged between 15 and 50 in 2001 from 2001 to 2016, differentiating those who lived in the same state every year during this period (i.e., never made an interstate move) from those who lived in more than one state (i.e., made at least one interstate move). We find those who never made an interstate move comprised 75 percent of the total population of this age cohort. This percentage varies by year of age but never falls below 62 percent even for those who were teenagers or young adults in 2001. There are also variations in these percentages by sex, race, nativity, and income, with the latter having the largest effects. We also find substantial variation in these percentages across states. Our findings suggest a need for more research on geographically immobile populations in U.S.
    View Full Paper PDF
  • Working Paper

    Measuring Income of the Aged in Household Surveys: Evidence from Linked Administrative Records

    June 2024

    Working Paper Number:

    CES-24-32

    Research has shown that household survey estimates of retirement income (defined benefit pensions and defined contribution account withdrawals) suffer from substantial underreporting which biases downward measures of financial well-being among the aged. Using data from both the redesigned 2016 Current Population Survey Annual Social and Economic Supplement (CPS ASEC) and the Health and Retirement Study (HRS), each matched with administrative records, we examine to what extent underreporting of retirement income affects key statistics such as reliance on Social Security benefits and poverty among the aged. We find that underreporting of retirement income is still prevalent in the CPS ASEC. While the HRS does a better job than the CPS ASEC in terms of capturing retirement income, it still falls considerably short compared to administrative records. Consequently, the relative importance of Social Security income remains overstated in household surveys'53 percent of elderly beneficiaries in the CPS ASEC and 49 percent in the HRS rely on Social Security for the majority of their incomes compared to 42 percent in the linked administrative data. The poverty rate for those aged 65 and over is also overstated'8.8 percent in the CPS ASEC and 7.4 percent in the HRS compared to 6.4 percent in the linked administrative data. Our results illustrate the effects of using alternative data sources in producing key statistics from the Social Security Administration's Income of the Aged publication.
    View Full Paper PDF
  • Working Paper

    When and Why Does Nonresponse Occur? Comparing the Determinants of Initial Unit Nonresponse and Panel Attrition

    September 2023

    Authors: Tiffany S. Neman

    Working Paper Number:

    CES-23-44

    Though unit nonresponse threatens data quality in both cross-sectional and panel surveys, little is understood about how initial nonresponse and later panel attrition may be theoretically or empirically distinct phenomena. This study advances current knowledge of the determinants of both unit nonresponse and panel attrition within the context of the U.S. Census Bureau's Survey of Income and Program Participation (SIPP) panel survey, which I link with high-quality federal administrative records, paradata, and geographic data. By exploiting the SIPP's interpenetrated sampling design and relying on cross-classified random effects modeling, this study quantifies the relative effects of sample household, interviewer, and place characteristics on baseline nonresponse and later attrition, addressing a critical gap in the literature. Given the reliance on successful record linkages between survey sample households and federal administrative data in the nonresponse research, this study also undertakes an explicitly spatial analysis of the place-based characteristics associated with successful record linkages in the U.S.
    View Full Paper PDF
  • Working Paper

    Finding Needles in Haystacks: Multiple-Imputation Record Linkage Using Machine Learning

    November 2021

    Working Paper Number:

    CES-21-35

    This paper considers the problem of record linkage between a household-level survey and an establishment-level frame in the absence of unique identifiers. Linkage between frames in this setting is challenging because the distribution of employment across establishments is highly skewed. To address these difficulties, this paper develops a probabilistic record linkage methodology that combines machine learning (ML) with multiple imputation (MI). This ML-MI methodology is applied to link survey respondents in the Health and Retirement Study to their workplaces in the Census Business Register. The linked data reveal new evidence that non-sampling errors in household survey data are correlated with respondents' workplace characteristics.
    View Full Paper PDF
  • Working Paper

    Optimal Probabilistic Record Linkage: Best Practice for Linking Employers in Survey and Administrative Data

    March 2019

    Working Paper Number:

    CES-19-08

    This paper illustrates an application of record linkage between a household-level survey and an establishment-level frame in the absence of unique identifiers. Linkage between frames in this setting is challenging because the distribution of employment across firms is highly asymmetric. To address these difficulties, this paper uses a supervised machine learning model to probabilistically link survey respondents in the Health and Retirement Study (HRS) with employers and establishments in the Census Business Register (BR) to create a new data source which we call the CenHRS. Multiple imputation is used to propagate uncertainty from the linkage step into subsequent analyses of the linked data. The linked data reveal new evidence that survey respondents' misreporting and selective nonresponse about employer characteristics are systematically correlated with wages.
    View Full Paper PDF
  • Working Paper

    Disclosure Limitation and Confidentiality Protection in Linked Data

    January 2018

    Working Paper Number:

    CES-18-07

    Confidentiality protection for linked administrative data is a combination of access modalities and statistical disclosure limitation. We review traditional statistical disclosure limitation methods and newer methods based on synthetic data, input noise infusion and formal privacy. We discuss how these methods are integrated with access modalities by providing three detailed examples. The first example is the linkages in the Health and Retirement Study to Social Security Administration data. The second example is the linkage of the Survey of Income and Program Participation to administrative data from the Internal Revenue Service and the Social Security Administration. The third example is the Longitudinal Employer-Household Dynamics data, which links state unemployment insurance records for workers and firms to a wide variety of censuses and surveys at the U.S. Census Bureau. For examples, we discuss access modalities, disclosure limitation methods, the effectiveness of those methods, and the resulting analytical validity. The final sections discuss recent advances in access modalities for linked administrative data.
    View Full Paper PDF
  • Working Paper

    Effects of a Government-Academic Partnership: Has the NSF-Census Bureau Research Network Helped Improve the U.S. Statistical System?

    January 2017

    Working Paper Number:

    CES-17-59R

    The National Science Foundation-Census Bureau Research Network (NCRN) was established in 2011 to create interdisciplinary research nodes on methodological questions of interest and significance to the broader research community and to the Federal Statistical System (FSS), particularly the Census Bureau. The activities to date have covered both fundamental and applied statistical research and have focused at least in part on the training of current and future generations of researchers in skills of relevance to surveys and alternative measurement of economic units, households, and persons. This paper discusses some of the key research findings of the eight nodes, organized into six topics: (1) Improving census and survey data collection methods; (2) Using alternative sources of data; (3) Protecting privacy and confidentiality by improving disclosure avoidance; (4) Using spatial and spatio-temporal statistical modeling to improve estimates; (5) Assessing data cost and quality tradeoffs; and (6) Combining information from multiple sources. It also reports on collaborations across nodes and with federal agencies, new software developed, and educational activities and outcomes. The paper concludes with an evaluation of the ability of the FSS to apply the NCRN's research outcomes and suggests some next steps, as well as the implications of this research-network model for future federal government renewal initiatives.
    View Full Paper PDF