CREAT: Census Research Exploration and Analysis Tool

Optimal Stratified Sampling for Probability-Based Online Panels

September 2025

Written by: Jonathan Eggleston

Working Paper Number:

CES-25-69

Abstract

Online probability-based panels have emerged as a cost-efficient means of conducting surveys in the 21st century. While there have been various recent advancements in sampling techniques for online panels, several critical aspects of sampling theory for online panels are lacking. Much of current sampling theory from the middle of the 20th century, when response rates were high, and online panels did not exist. This paper presents a mathematical model of stratified sampling for online panels that takes into account historical response rates and survey costs. Through some simplifying assumptions, the model shows that the optimal sample allocation for online panels can largely resemble the solution for a cross-sectional survey. To apply the model, I use the Census Household Panel to show how this method could improve the average precision of key estimates. Holding fielding costs constant, the new sample rates improve the average precision of estimates between 1.47 and 17.25 percent, depending on the importance weight given to an overall population mean compared to mean estimates for racial and ethnic subgroups.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
data census, census data, survey, respondent, average, hispanic, trend, budget, population, rate, census bureau, sampling, sample, use census, assessing

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Computer Assisted Telephone Interviews and Computer Assisted Personal Interviews, American Community Survey, Health and Retirement Study, National Opinion Research Center, Census Bureau Disclosure Review Board, White Non-Hispanic

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Optimal Stratified Sampling for Probability-Based Online Panels' are listed below in order of similarity.