-
Work Organization and Cumulative Advantage
March 2025
Working Paper Number:
CES-25-18
Over decades of wage stagnation, researchers have argued that reorganizing work can boost pay for disadvantaged workers. But upgrading jobs could inadvertently shift hiring away from those workers, exacerbating their disadvantage. We theorize how work organization affects cumulative advantage in the labor market, or the extent to which high-paying positions are increasingly allocated to already-advantaged workers. Specifically, raising technical skill demands exacerbates cumulative advantage by shifting hiring towards higher-skilled applicants. In contrast, when employers increase autonomy or skills learned on-the-job, they raise wages to buy worker consent or commitment, rather than pre-existing skill. To test this idea, we match administrative earnings to task descriptions from job posts. We compare earnings for workers hired into the same occupation and firm, but under different task allocations. When employers raise complexity and autonomy, new hires' starting earnings increase and grow faster. However, while the earnings boost from complex, technical tasks shifts employment toward workers with higher prior earnings, worker selection changes less for tasks learned on-the-job and very little for high autonomy tasks. These results demonstrate how reorganizing work can interrupt cumulative advantage.
View Full
Paper PDF
-
The China Shock Revisited: Job Reallocation and Industry Switching in U.S. Labor Markets
October 2024
Working Paper Number:
CES-24-65
Using confidential administrative data from the U.S. Census Bureau we revisit how the rise in Chinese import penetration has reshaped U.S. local labor markets. Local labor markets more exposed to the China shock experienced larger reallocation from manufacturing to services jobs. Most of this reallocation occurred within firms that simultaneously contracted manufacturing operations while expanding employment in services. Notably, about 40% of the manufacturing job loss effect is due to continuing establishments switching their primary activity from manufacturing to trade-related services such as research, management, and wholesale. The effects of Chinese import penetration vary by local labor market characteristics. In areas with high human capital, including much of the West Coast and large cities, job reallocation from manufacturing to services has been substantial. In areas with low human capital and a high initial manufacturing share, including much of the Midwest and the South, we find limited job reallocation. We estimate this differential response to the China shock accounts for half of the 1997-2007 job growth gap between these regions.
View Full
Paper PDF
-
The Spillover Effects of Top Income Inequality
June 2023
Working Paper Number:
CES-23-29
Top income inequality in the United States has increased considerably within occupations. This phenomenon has led to a search for a common explanation. We instead develop a theory where increases in income inequality originating within a few occupations can 'spill over' through consumption into others. We show theoretically that such spillovers occur when an occupation provides non divisible services to consumers, with physicians our prime example. Examining local income inequality across U.S. regions, the data suggest that such spillovers exist for physicians, dentists, and real estate agents. Estimated spillovers for other occupations are consistent with the predictions of our theory.
View Full
Paper PDF
-
The Characteristics and Geographic Distribution of Robot Hubs in U.S. Manufacturing Establishments
March 2023
Working Paper Number:
CES-23-14
We use data from the Annual Survey of Manufactures to study the characteristics and geography of investments in robots across U.S. manufacturing establishments. We find that robotics adoption and robot intensity (the number of robots per employee) is much more strongly related to establishment size than age. We find that establishments that report having robotics have higher capital expenditures, including higher information technology (IT) capital expenditures. Also, establishments are more likely to have robotics if other establishments in the same Core-Based Statistical Area (CBSA) and industry also report having robotics. The distribution of robots is highly skewed across establishments' locations. Some locations, which we call Robot Hubs, have far more robots than one would expect even after accounting for industry and manufacturing employment. We characterize these Robot Hubs along several industry, demographic, and institutional dimensions. The presence of robot integrators and higher levels of union membership are positively correlated with being a Robot Hub.
View Full
Paper PDF
-
Opening the Black Box: Task and Skill Mix and Productivity Dispersion
September 2022
Authors:
John Haltiwanger,
Lucia Foster,
Cheryl Grim,
Zoltan Wolf,
Cindy Cunningham,
Sabrina Wulff Pabilonia,
Jay Stewart,
Cody Tuttle,
G. Jacob Blackwood,
Matthew Dey,
Rachel Nesbit
Working Paper Number:
CES-22-44
An important gap in most empirical studies of establishment-level productivity is the limited information about workers' characteristics and their tasks. Skill-adjusted labor input measures have been shown to be important for aggregate productivity measurement. Moreover, the theoretical literature on differences in production technologies across businesses increasingly emphasizes the task content of production. Our ultimate objective is to open this black box of tasks and skills at the establishment-level by combining establishment-level data on occupations from the Bureau of Labor Statistics (BLS) with a restricted-access establishment-level productivity dataset created by the BLS-Census Bureau Collaborative Micro-productivity Project. We take a first step toward this objective by exploring the conceptual, specification, and measurement issues to be confronted. We provide suggestive empirical analysis of the relationship between within-industry dispersion in productivity and tasks and skills. We find that within-industry productivity dispersion is strongly positively related to within-industry task/skill dispersion.
View Full
Paper PDF
-
The impact of manufacturing credentials on earnings and the probability of employment
May 2022
Working Paper Number:
CES-22-15
This paper examines the labor market returns to earning industry-certified credentials in the manufacturing sector. Specifically, we are interested in estimating the impact of a manufacturing credential on wages, probability of employment, and probability of employment specifically in the manufacturing sector post credential attainment. We link students who earned manufacturing credentials to their enrollment and completion records, and then further link them to their IRS tax records for earnings and employment (Form W2 and 1040) and to the American Community Survey and decennial census for demographic information. We present earnings trajectories for workers with credentials by type of credential, industry of employment, age, race and ethnicity, gender, and state. To obtain a more causal estimate of the impact of a credential on earnings, we implement a coarsened exact matching strategy to compare outcomes between otherwise similar people with and without a manufacturing credential. We find that the attainment of a manufacturing industry credential is associated with higher earnings and a higher likelihood of labor market participation when we compare attainers to a group of non-attainers who are otherwise similar.
View Full
Paper PDF
-
Automation and the Workforce: A Firm-Level View from the 2019 Annual Business Survey
April 2022
Authors:
John Haltiwanger,
Lucia Foster,
Emin Dinlersoz,
Nikolas Zolas,
Daron Acemoglu,
Catherine Buffington,
Nathan Goldschlag,
Zachary Kroff,
David Beede,
Gary Anderson,
Eric Childress,
Pascual Restrepo
Working Paper Number:
CES-22-12R
This paper describes the adoption of automation technologies by US firms across all economic sectors by leveraging a new module introduced in the 2019 Annual Business Survey, conducted by the US Census Bureau in partnership with the National Center for Science and Engineering Statistics (NCSES). The module collects data from over 300,000 firms on the use of five advanced technologies: AI, robotics, dedicated equipment, specialized software, and cloud computing. The adoption of these technologies remains low (especially for AI and robotics), varies substantially across industries, and concentrates on large and young firms. However, because larger firms are much more likely to adopt them, 12-64% of US workers and 22-72% of manufacturing workers are exposed to these technologies. Firms report a variety of motivations for adoption, including automating tasks previously performed by labor. Consistent with the use of these technologies for automation, adopters have higher labor productivity and lower labor shares. In particular, the use of these technologies is associated with a 11.4% higher labor productivity, which accounts for 20'30% of the difference in labor productivity between large firms and the median firm in an industry. Adopters report that these technologies raised skill requirements and led to greater demand for skilled labor, but brought limited or ambiguous effects to their employment levels.
View Full
Paper PDF
-
Location, Location, Location
October 2021
Working Paper Number:
CES-21-32R
We use data from the Longitudinal Employer-Household Dynamics program to study the causal effects of location on earnings. Starting from a model with employer and employee fixed effects, we estimate the average earnings premiums associated with jobs in different commuting zones (CZs) and different CZ-industry pairs. About half of the variation in mean wages across CZs is attributable to differences in worker ability (as measured by their fixed effects); the other half is attributable to place effects. We show that the place effects from a richly specified cross sectional wage model overstate the causal effects of place (due to unobserved worker ability), while those from a model that simply adds person fixed effects understate the causal effects (due to unobserved heterogeneity in the premiums paid by different firms in the same CZ). Local industry agglomerations are associated with higher wages, but overall differences in industry composition and in CZ-specific returns to industries explain only a small fraction of average place effects. Estimating separate place effects for college and non-college workers, we find that the college wage gap is bigger in larger and higher-wage places, but that two-thirds of this variation is attributable to differences in the relative skills of the two groups in different places. Most of the remaining variation reflects the enhanced sorting of more educated workers to higher-paying industries in larger and higher-wage CZs. Finally, we find that local housing costs at least fully offset local pay premiums, implying that workers who move to larger CZs have no higher net-of-housing consumption.
View Full
Paper PDF
-
U.S. Long-Term Earnings Outcomes by Sex, Race, Ethnicity, and Place of Birth
May 2021
Working Paper Number:
CES-21-07R
This paper is part of the Global Income Dynamics Project cross-country comparison of earnings inequality, volatility, and mobility. Using data from the U.S. Census Bureau's Longitudinal Employer-Household Dynamics (LEHD) infrastructure files we produce a uniform set of earnings statistics for the U.S. From 1998 to 2019, we find U.S. earnings inequality has increased and volatility has decreased. The combination of increased inequality and reduced volatility suggest earnings growth differs substantially across different demographic groups. We explore this further by estimating 12-year average earnings for a single cohort of age 25-54 eligible workers. Differences in labor supply (hours paid and quarters worked) are found to explain almost 90% of the variation in worker earnings, although even after controlling for labor supply substantial earnings differences across demographic groups remain unexplained. Using a quantile regression approach, we estimate counterfactual earnings distributions for each demographic group. We find that at the bottom of the earnings distribution differences in characteristics such as hours paid, geographic division, industry, and education explain almost all the earnings gap, however above the median the contribution of the differences in the returns to characteristics becomes the dominant component.
View Full
Paper PDF
-
An Evaluation of the Gender Wage Gap Using Linked Survey and Administrative Data
November 2020
Working Paper Number:
CES-20-34
The narrowing of the gender wage gap has slowed in recent decades. However, current estimates show that, among full-time year-round workers, women earn approximately 18 to 20 percent less than men at the median. Women's human capital and labor force characteristics that drive wages increasingly resemble men's, so remaining differences in these characteristics explain less of the gender wage gap now than in the past. As these factors wane in importance, studies show that others like occupational and industrial segregation explain larger portions of the gender wage gap. However, a major limitation of these studies is that the large datasets required to analyze occupation and industry effectively lack measures of labor force experience. This study combines survey and administrative data to analyze and improve estimates of the gender wage gap within detailed occupations, while also accounting for gender differences in work experience. We find a gender wage gap of 18 percent among full-time, year-round workers across 316 detailed occupation categories. We show the wage gap varies significantly by occupation: while wages are at parity in some occupations, gaps are as large as 45 percent in others. More competitive and hazardous occupations, occupations that reward longer hours of work, and those that have a larger proportion of women workers have larger gender wage gaps. The models explain less of the wage gap in occupations with these attributes. Occupational characteristics shape the conditions under which men and women work and we show these characteristics can make for environments that are more or less conducive to gender parity in earnings.
View Full
Paper PDF