CREAT: Census Research Exploration and Analysis Tool

Opening the Black Box: Task and Skill Mix and Productivity Dispersion

September 2022

Abstract

An important gap in most empirical studies of establishment-level productivity is the limited information about workers' characteristics and their tasks. Skill-adjusted labor input measures have been shown to be important for aggregate productivity measurement. Moreover, the theoretical literature on differences in production technologies across businesses increasingly emphasizes the task content of production. Our ultimate objective is to open this black box of tasks and skills at the establishment-level by combining establishment-level data on occupations from the Bureau of Labor Statistics (BLS) with a restricted-access establishment-level productivity dataset created by the BLS-Census Bureau Collaborative Micro-productivity Project. We take a first step toward this objective by exploring the conceptual, specification, and measurement issues to be confronted. We provide suggestive empirical analysis of the relationship between within-industry dispersion in productivity and tasks and skills. We find that within-industry productivity dispersion is strongly positively related to within-industry task/skill dispersion.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
production, productive, manufacturing, payroll, industrial, aggregate, employee, employ, employed, industry productivity, labor, productivity differences, efficiency, productivity measures, measures productivity, establishment, regulation productivity, workforce, worker, productivity dispersion, occupation, aggregate productivity

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Metropolitan Statistical Area, Annual Survey of Manufactures, Bureau of Labor Statistics, Center for Economic Studies, Ordinary Least Squares, Total Factor Productivity, Cobb-Douglas, Bureau of Economic Analysis, University of Maryland, Longitudinal Business Database, IQR, Employer Identification Numbers, Department of Labor, Standard Occupational Classification, North American Industry Classification System, Census Bureau Business Register, Occupational Employment Statistics, TFPR, TFPQ, Quarterly Census of Employment and Wages, Census Bureau Disclosure Review Board, Annual Business Survey

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Opening the Black Box: Task and Skill Mix and Productivity Dispersion' are listed below in order of similarity.