An important gap in most empirical studies of establishment-level productivity is the limited information about workers' characteristics and their tasks. Skill-adjusted labor input measures have been shown to be important for aggregate productivity measurement. Moreover, the theoretical literature on differences in production technologies across businesses increasingly emphasizes the task content of production. Our ultimate objective is to open this black box of tasks and skills at the establishment-level by combining establishment-level data on occupations from the Bureau of Labor Statistics (BLS) with a restricted-access establishment-level productivity dataset created by the BLS-Census Bureau Collaborative Micro-productivity Project. We take a first step toward this objective by exploring the conceptual, specification, and measurement issues to be confronted. We provide suggestive empirical analysis of the relationship between within-industry dispersion in productivity and tasks and skills. We find that within-industry productivity dispersion is strongly positively related to within-industry task/skill dispersion.
-
Punctuated Entrepreneurship (Among Women)
May 2018
Working Paper Number:
CES-18-26
The gender gap in entrepreneurship may be explained in part by employee non-compete agreements. Exploiting exogenous state-level variation in non-compete policy, I find that women more strictly subject to non-competes are 11-17% more likely to start companies after their employers dissolve. This result is not explained by the incidence of non-competes or lawsuits; however, women face higher relative costs in defending against potential litigation and in returning to paid employment after abandoning their ventures. Thus entrepreneurship among women may be 'punctuated' in that would-be female founders are throttled by non-competes, their potential unleashed only by the failure of their employers.
View Full
Paper PDF
-
Dispersion in Dispersion: Measuring Establishment-Level Differences in Productivity
April 2018
Working Paper Number:
CES-18-25RR
We describe new experimental productivity statistics, Dispersion Statistics on Productivity (DiSP), jointly developed and published by the Bureau of Labor Statistics (BLS) and the Census Bureau. Productivity measures are critical for understanding economic performance. Official BLS productivity statistics, which are available for major sectors and detailed industries, provide information on the sources of aggregate productivity growth. A large body of research shows that within-industry variation in productivity provides important insights into productivity dynamics. This research reveals large and persistent productivity differences across businesses even within narrowly defined industries. These differences vary across industries and over time and are related to productivity-enhancing reallocation. Dispersion in productivity across businesses can provide information about the nature of competition and frictions within sectors, and about the sources of rising wage inequality across businesses. Because there were no official statistics providing this level of detail, BLS and the Census Bureau partnered to create measures of within-industry productivity dispersion. These measures complement official BLS aggregate and industry-level productivity growth statistics and thereby improve our understanding of the rich productivity dynamics in the U.S. economy. The underlying microdata for these measures are available for use by qualified researchers on approved projects in the Federal Statistical Research Data Center (FSRDC) network. These new statistics confirm the presence of large productivity differences and we hope that these new data products will encourage further research into understanding these differences.
View Full
Paper PDF
-
Innovation, Productivity Dispersion, and Productivity Growth
February 2018
Working Paper Number:
CES-18-08
We examine whether underlying industry innovation dynamics are an important driver of the large dispersion in productivity across firms within narrowly defined sectors. Our hypothesis is that periods of rapid innovation are accompanied by high rates of entry, significant experimentation and, in turn, a high degree of productivity dispersion. Following this experimentation phase, successful innovators and adopters grow while unsuccessful innovators contract and exit yielding productivity growth. We examine the dynamic relationship between entry, productivity dispersion, and productivity growth using a new comprehensive firm-level dataset for the U.S. We find a surge of entry within an industry yields an immediate increase in productivity dispersion and a lagged increase in productivity growth. These patterns are more pronounced for the High Tech sector where we expect there to be more innovative activities. These patterns change over time suggesting other forces are at work during the post-2000 slowdown in aggregate productivity.
View Full
Paper PDF
-
Reallocation, Firm Turnover, and Efficiency: Selection on Productivity or Profitability?
September 2005
Working Paper Number:
CES-05-11
There is considerable evidence that producer-level churning contributes substantially to aggregate (industry) productivity growth, as more productive businesses displace less productive ones. However, this research has been limited by the fact that producer-level prices are typically unobserved; thus within-industry price differences are embodied in productivity measures. If prices reflect idiosyncratic demand or market power shifts, high 'productivity' businesses may not be particularly efficient, and the literature's findings might be better interpreted as evidence of entering businesses displacing less profitable, but not necessarily less productive, exiting businesses. In this paper, we investigate the nature of selection and productivity growth using data from industries where we observe producer-level quantities and prices separately. We show there are important differences between revenue and physical productivity. A key dissimilarity is that physical productivity is inversely correlated with plant-level prices while revenue productivity is positively correlated with prices. This implies that previous work linking (revenue-based) productivity to survival has confounded the separate and opposing effects of technical efficiency and demand on survival, understating the true impacts of both. We further show that young producers charge lower prices than incumbents, and as such the literature understates the productivity advantage of new producers and the contribution of entry to aggregate productivity growth.
View Full
Paper PDF
-
The Role of Establishments and the Concentration of Occupations in Wage Inequality
September 2015
Working Paper Number:
CES-15-26
This paper uses the microdata of the Occupational Employment Statistics (OES) Survey to assess the contribution of occupational concentration to wage inequality between establishments and its growth over time. We show that occupational concentration plays an important role in wage determination for workers, in a wide variety of occupations, and can explain some establishmentlevel
wage variation. Occupational concentration is increasing during the 2000-2011 time period, although much of this change is explained by other observable establishment characteristics. Overall, occupational concentration can help explain a small amount of wage inequality growth between establishments during this time period.
View Full
Paper PDF
-
Productivity Dispersion, Entry, and Growth in U.S. Manufacturing Industries
August 2021
Working Paper Number:
CES-21-21
Within-industry productivity dispersion is pervasive and exhibits substantial variation across countries, industries, and time. We build on prior research that explores the hypothesis that periods of innovation are initially associated with a surge in business start-ups, followed by increased experimentation that leads to rising dispersion potentially with declining aggregate productivity growth, and then a shakeout process that results in higher productivity growth and declining productivity dispersion. Using novel detailed industry-level data on total factor productivity and labor productivity dispersion from the Dispersion Statistics on Productivity along with novel measures of entry rates from the Business Dynamics Statistics and productivity growth data from the Bureau of Labor Statistics for U.S. manufacturing industries, we find support for this hypothesis, especially for the high-tech industries.
View Full
Paper PDF
-
Between Firm Changes in Earnings Inequality: The Dominant Role of Industry Effects
February 2020
Working Paper Number:
CES-20-08
We find that most of the rising between firm earnings inequality that dominates the overall increase in inequality in the U.S. is accounted for by industry effects. These industry effects stem from rising inter-industry earnings differentials and not from changing distribution of employment across industries. We also find the rising inter-industry earnings differentials are almost completely accounted for by occupation effects. These results link together the key findings from separate components of the recent literature: one focuses on firm effects and the other on occupation effects. The link via industry effects challenges conventional wisdom.
View Full
Paper PDF
-
A Task-based Approach to Constructing Occupational Categories
with Implications for Empirical Research in Labor Economics
September 2019
Working Paper Number:
CES-19-27
Most applied research in labor economics that examines returns to worker skills or differences in earnings across subgroups of workers typically accounts for the role of occupations by controlling for occupational categories. Researchers often aggregate detailed occupations into categories based on the Standard Occupation Classification (SOC) coding scheme, which is based largely on narratives or qualitative measures of workers' tasks. Alternatively, we propose two quantitative task-based approaches to constructing occupational categories by using factor analysis with O*NET job descriptors that provide a rich set of continuous measures of job tasks across all occupations. We find that our task-based approach outperforms the SOC-based approach in terms of lower occupation distance measures. We show that our task-based approach provides an intuitive, nuanced interpretation for grouping occupations and permits quantitative assessments of similarities in task compositions across occupations. We also replicate a recent analysis and find that our task-based occupational categories explain more of the gender wage gap than the SOC-based approaches explain. Our study enhances the Federal Statistical System's understanding of the SOC codes, investigates ways to use third-party data to construct useful research variables that can potentially be added to Census Bureau data products to improve their quality and versatility, and sheds light on how the use of alternative occupational categories in economics research may lead to different empirical results and deeper understanding in the analysis of labor market outcomes.
View Full
Paper PDF
-
Nature Versus Nurture in the Origins of Highly Productive Businesses: An Exploratory Analysis of U.S. Manufacturing Establishments
September 2011
Working Paper Number:
CES-11-26
This paper investigates the origins of productivity leaders, those that operate close to and help push out the production frontier. Do such businesses emerge as top performers from the very beginning of their lives, for example as the consequence of an outstanding founding idea, technology, or location? Or, at the other extreme, do they appear initially as completely average (or even underperformers) that exhibit gradual improvement as they learn and develop with age? To answer this question we draw upon five decades of U.S. Census of Manufacturing (CM) establishment-level data, tracing the productivity leaders of the most recent CM (2007) back over their observed life spans. We also examine possible industry-level correlates of variation in the extent of nature versus nurture that are suggested by theories of industry dynamics and economic growth.
View Full
Paper PDF
-
REALLOCATION IN THE GREAT RECESSION: CLEANSING OR NOT?
August 2013
Working Paper Number:
CES-13-42
The high pace of output and input reallocation across producers is pervasive in the U.S. economy. Evidence shows this high pace of reallocation is closely linked to productivity. Resources are shifted away from low productivity producers towards high productivity producers. While these patterns hold on average, the extent to which the reallocation dynamics in recessions are 'cleansing' is an open question. That is, are recessions periods of increased reallocation that move resources away from lower productivity activities towards higher productivity uses? It could be recessions are times when the opportunity cost of time and resources are low implying recessions will be times of accelerated productivity enhancing reallocation. Prior research suggests the recession in the early 1980s is consistent with an accelerated pace of productivity enhancing reallocation. Alternative hypotheses highlight the potential distortions to reallocation dynamics in recessions. Such distortions might arise from many factors including, for example, distortions to credit markets. We find that in post-1980 recessions prior to the Great Recession, downturns are periods of accelerated reallocation that is even more productivity enhancing than in normal times. In the Great Recession, we find the intensity of reallocation fell rather than rose (due to the especially sharp decline in job creation) and the reallocation that did occur was less productivity enhancing than in prior recessions.
View Full
Paper PDF