CREAT: Census Research Exploration and Analysis Tool

Location, Location, Location

October 2021

Working Paper Number:

CES-21-32R

Abstract

We use data from the Longitudinal Employer-Household Dynamics program to study the causal effects of location on earnings. Starting from a model with employer and employee fixed effects, we estimate the average earnings premiums associated with jobs in different commuting zones (CZs) and different CZ-industry pairs. About half of the variation in mean wages across CZs is attributable to differences in worker ability (as measured by their fixed effects); the other half is attributable to place effects. We show that the place effects from a richly specified cross sectional wage model overstate the causal effects of place (due to unobserved worker ability), while those from a model that simply adds person fixed effects understate the causal effects (due to unobserved heterogeneity in the premiums paid by different firms in the same CZ). Local industry agglomerations are associated with higher wages, but overall differences in industry composition and in CZ-specific returns to industries explain only a small fraction of average place effects. Estimating separate place effects for college and non-college workers, we find that the college wage gap is bigger in larger and higher-wage places, but that two-thirds of this variation is attributable to differences in the relative skills of the two groups in different places. Most of the remaining variation reflects the enhanced sorting of more educated workers to higher-paying industries in larger and higher-wage CZs. Finally, we find that local housing costs at least fully offset local pay premiums, implying that workers who move to larger CZs have no higher net-of-housing consumption.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
industrial, earnings, employee, employ, employed, labor, establishment, heterogeneity, metropolitan, unobserved, workplace, workforce, wage effects, industry wages, wage gap, occupation, wage differences, wage industries, housing, regress, rent

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Ordinary Least Squares, National Longitudinal Survey of Youth, Urban Institute, North American Industry Classification System, American Community Survey, Longitudinal Employer Household Dynamics, AKM, UC Berkeley, Census Bureau Disclosure Review Board, Federal Reserve Board of Governors

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Location, Location, Location' are listed below in order of similarity.