CREAT: Census Research Exploration and Analysis Tool

Papers Containing Keywords(s): 'household survey'

The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
Click here to search again

Frequently Occurring Concepts within this Search

Viewing papers 1 through 10 of 16


  • Working Paper

    Nonresponse and Coverage Bias in the Household Pulse Survey: Evidence from Administrative Data

    October 2024

    Working Paper Number:

    CES-24-60

    The Household Pulse Survey (HPS) conducted by the U.S. Census Bureau is a unique survey that provided timely data on the effects of the COVID-19 Pandemic on American households and continues to provide data on other emergent social and economic issues. Because the survey has a response rate in the single digits and only has an online response mode, there are concerns about nonresponse and coverage bias. In this paper, we match administrative data from government agencies and third-party data to HPS respondents to examine how representative they are of the U.S. population. For comparison, we create a benchmark of American Community Survey (ACS) respondents and nonrespondents and include the ACS respondents as another point of reference. Overall, we find that the HPS is less representative of the U.S. population than the ACS. However, performance varies across administrative variables, and the existing weighting adjustments appear to greatly improve the representativeness of the HPS. Additionally, we look at household characteristics by their email domain to examine the effects on coverage from limiting email messages in 2023 to addresses from the contact frame with at least 90% deliverability rates, finding no clear change in the representativeness of the HPS afterwards.
    View Full Paper PDF
  • Working Paper

    Incorporating Administrative Data in Survey Weights for the 2018-2022 Survey of Income and Program Participation

    October 2024

    Working Paper Number:

    CES-24-58

    Response rates to the Survey of Income and Program Participation (SIPP) have declined over time, raising the potential for nonresponse bias in survey estimates. A potential solution is to leverage administrative data from government agencies and third-party data providers when constructing survey weights. In this paper, we modify various parts of the SIPP weighting algorithm to incorporate such data. We create these new weights for the 2018 through 2022 SIPP panels and examine how the new weights affect survey estimates. Our results show that before weighting adjustments, SIPP respondents in these panels have higher socioeconomic status than the general population. Existing weighting procedures reduce many of these differences. Comparing SIPP estimates between the production weights and the administrative data-based weights yields changes that are not uniform across the joint income and program participation distribution. Unlike other Census Bureau household surveys, there is no large increase in nonresponse bias in SIPP due to the COVID-19 Pandemic. In summary, the magnitude and sign of nonresponse bias in SIPP is complicated, and the existing weighting procedures may change the sign of nonresponse bias for households with certain incomes and program benefit statuses.
    View Full Paper PDF
  • Working Paper

    Where Are Your Parents? Exploring Potential Bias in Administrative Records on Children

    March 2024

    Working Paper Number:

    CES-24-18

    This paper examines potential bias in the Census Household Composition Key's (CHCK) probabilistic parent-child linkages. By linking CHCK data to the American Community Survey (ACS), we reveal disparities in parent-child linkages among specific demographic groups and find that characteristics of children that can and cannot be linked to the CHCK vary considerably from the larger population. In particular, we find that children from low-income, less educated households and of Hispanic origin are less likely to be linked to a mother or a father in the CHCK. We also highlight some data considerations when using the CHCK.
    View Full Paper PDF
  • Working Paper

    National Experimental Wellbeing Statistics - Version 1

    February 2023

    Working Paper Number:

    CES-23-04

    This is the U.S. Census Bureau's first release of the National Experimental Wellbeing Statistics (NEWS) project. The NEWS project aims to produce the best possible estimates of income and poverty given all available survey and administrative data. We link survey, decennial census, administrative, and third-party data to address measurement error in income and poverty statistics. We estimate improved (pre-tax money) income and poverty statistics for 2018 by addressing several possible sources of bias documented in prior research. We address biases from 1) unit nonresponse through improved weights, 2) missing income information in both survey and administrative data through improved imputation, and 3) misreporting by combining or replacing survey responses with administrative information. Reducing survey error substantially affects key measures of well-being: We estimate median household income is 6.3 percent higher than in survey estimates, and poverty is 1.1 percentage points lower. These changes are driven by subpopulations for which survey error is particularly relevant. For house holders aged 65 and over, median household income is 27.3 percent higher and poverty is 3.3 percentage points lower than in survey estimates. We do not find a significant impact on median household income for householders under 65 or on child poverty. Finally, we discuss plans for future releases: addressing other potential sources of bias, releasing additional years of statistics, extending the income concepts measured, and including smaller geographies such as state and county.
    View Full Paper PDF
  • Working Paper

    The Impact of Household Surveys on 2020 Census Self-Response

    July 2022

    Working Paper Number:

    CES-22-24

    Households who were sampled in 2019 for the American Community Survey (ACS) had lower self-response rates to the 2020 Census. The magnitude varied from -1.5 percentage point for household sampled in January 2019 to -15.1 percent point for households sampled in December 2019. Similar effects are found for the Current Population Survey (CPS) as well.
    View Full Paper PDF
  • Working Paper

    Comparing the 2019 American Housing Survey to Contemporary Sources of Property Tax Records: Implications for Survey Efficiency and Quality

    June 2022

    Working Paper Number:

    CES-22-22

    Given rising nonresponse rates and concerns about respondent burden, government statistical agencies have been exploring ways to supplement household survey data collection with administrative records and other sources of third-party data. This paper evaluates the potential of property tax assessment records to improve housing surveys by comparing these records to responses from the 2019 American Housing Survey. Leveraging the U.S. Census Bureau's linkage infrastructure, we compute the fraction of AHS housing units that could be matched to a unique property parcel (coverage rate), as well as the extent to which survey and property tax data contain the same information (agreement rate). We analyze heterogeneity in coverage and agreement across states, housing characteristics, and 11 AHS items of interest to housing researchers. Our results suggest that partial replacement of AHS data with property data, targeted toward certain survey items or single-family detached homes, could reduce respondent burden without altering data quality. Further research into partial-replacement designs is needed and should proceed on an item-by-item basis. Our work can guide this research as well as those who wish to conduct independent research with property tax records that is representative of the U.S. housing stock.
    View Full Paper PDF
  • Working Paper

    Finding Needles in Haystacks: Multiple-Imputation Record Linkage Using Machine Learning

    November 2021

    Working Paper Number:

    CES-21-35

    This paper considers the problem of record linkage between a household-level survey and an establishment-level frame in the absence of unique identifiers. Linkage between frames in this setting is challenging because the distribution of employment across establishments is highly skewed. To address these difficulties, this paper develops a probabilistic record linkage methodology that combines machine learning (ML) with multiple imputation (MI). This ML-MI methodology is applied to link survey respondents in the Health and Retirement Study to their workplaces in the Census Business Register. The linked data reveal new evidence that non-sampling errors in household survey data are correlated with respondents' workplace characteristics.
    View Full Paper PDF
  • Working Paper

    Measuring the Impact of COVID-19 on Businesses and People: Lessons from the Census Bureau's Experience

    January 2021

    Working Paper Number:

    CES-21-02

    We provide an overview of Census Bureau activities to enhance the consistency, timeliness, and relevance of our data products in response to the COVID-19 pandemic. We highlight new data products designed to provide timely and granular information on the pandemic's impact: the Small Business Pulse Survey, weekly Business Formation Statistics, the Household Pulse Survey, and Community Resilience Estimates. We describe pandemic-related content introduced to existing surveys such as the Annual Business Survey and the Current Population Survey. We discuss adaptations to ensure the continuity and consistency of existing data products such as principal economic indicators and the American Community Survey.
    View Full Paper PDF
  • Working Paper

    The Potential for Using Combined Survey and Administrative Data Sources to Study Internal Labor Migration

    January 2017

    Working Paper Number:

    CES-17-55

    This paper introduces a novel data set combining survey data from the American Community Survey (ACS) with administrative data on employment from the Longitudinal Employer-Household Dynamics program, in order to study geographic labor mobility. With its rich set of information about individuals at the time of the migration decision, large sample size, and near-comprehensive ability to detect labor mobility, the new combined ACS-LEHD data offers several advantages over the existing data sets that are typically used in the study of migration, such as the Decennial Census, Current Population Survey, and Internal Revenue Service data. An overview of how these different data sets can be employed, and examples demonstrating the usefulness of the newly proposed data set, are provided. Aggregate statistics and stylized facts are generated from the ACS-LEHD data which reveal many of the same features as the existing data sets, including the decline of aggregate mobility throughout the past decade, as well as many of the known demographic differences in migration propensity.
    View Full Paper PDF
  • Working Paper

    Matching Addresses between Household Surveys and Commercial Data

    July 2015

    Authors: Quentin Brummet

    Working Paper Number:

    carra-2015-04

    Matching third-party data sources to household surveys can benefit household surveys in a number of ways, but the utility of these new data sources depends critically on our ability to link units between data sets. To understand this better, this report discusses potential modifications to the existing match process that could potentially improve our matches. While many changes to the matching procedure produce marginal improvements in match rates, substantial increases in match rates can only be achieved by relaxing the definition of a successful match. In the end, the results show that the most important factor determining the success of matching procedures is the quality and composition of the data sets being matched.
    View Full Paper PDF