CREAT: Census Research Exploration and Analysis Tool

Decomposing Learning By Doing in New Plants

December 1992

Working Paper Number:

CES-92-16

Abstract

The paper examines learning by doing in the context of a production function in which the other arguments are labor, human capital, physical capital, and vintage as a proxy for embodied technical change in physical capital. Learning is further decomposed into organization learning, capital learning, and manual task learning. The model is tested with time series and cross section data for various samples of up to 2,150 plants over a 14 year period. Word Perfect Version

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
investment, production, productive, manufacturing, industrial, growth, earnings, technical, gain, employee, organizational, managerial, employed, labor, shift, specialization, producing, development, productivity size, wages productivity

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Internal Revenue Service, American Statistical Association, Longitudinal Research Database, Center for Economic Studies, New England County Metropolitan, Bureau of Economic Analysis, Longitudinal Business Database

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Decomposing Learning By Doing in New Plants' are listed below in order of similarity.