We use plant-level data from the US Census of Manufacturers to study the short and long run effects of temperature on manufacturing activity. We document that temperature shocks significantly increase energy costs and lower the productivity of small manufacturing plants, while large plants are mostly unaffected. In US counties that experienced higher increases in average temperatures between the 1980s and the 2010s, these heterogeneous effects have led to higher concentration of manufacturing activity within large plants, and a reallocation of labor from small to large manufacturing establishments. We offer a preliminary discussion of potential mechanisms explaining why large manufacturing firms might be better equipped for long-run adaptation to climate change, including their ability to hedge across locations, easier access to finance, and higher managerial skills.
-
Technology Lock-In and Costs of Delayed Climate Policy
July 2023
Working Paper Number:
CES-23-33
This paper studies the implications of current energy prices for future energy efficiency and climate policy. Using U.S. Census microdata and quasi-experimental variation in energy prices, we first show that manufacturing plants that open when electricity prices are low consume more energy throughout their lifetime, regardless of current electricity prices. We then estimate that a persistent bias of technological change toward energy can explain the long-term effects of entry-year electricity prices on energy intensity. Overall, this 'technology lock-in' implies that increasing entry-year electricity prices by 10% would decrease a plant's energy intensity of production by 3% throughout its lifetime.
View Full
Paper PDF
-
Local Environmental Regulation and Plant-Level Productivity
September 2010
Working Paper Number:
CES-10-30R
This paper examines the impact of environmental regulation on the productivity of manufacturing plants in the United States. Establishment-level data from three Censuses of Manufactures are used to estimate 3-factor Cobb-Douglas production functions that include a measure of the stringency of environmental regulation faced by manufacturing plants. In contrast to previous studies, this paper examines effects on plants in all manufacturing industries, not just those in 'dirty' industries. Further, this paper employs spatial-temporal variation in environmental compliance costs to identify effects, using a time-varying county-level index that is based on multiple years of establishment-level data from the Pollution Abatement Costs and Expenditures survey and the Annual Survey of Manufactures. Results suggest that, for the average manufacturing plant, the effect on productivity of being in a county with higher environmental compliance costs is relatively small and often not statistically significant. For the average plant, the main effect of environmental regulation may not be in the spatial and temporal dimensions.
View Full
Paper PDF
-
Air Pollution Abatement Costs Under the Clean Air Act: Evidence from the PACE Survey
December 2001
Working Paper Number:
CES-01-12
This paper uses establishment-level data from the U.S. Census Bureau's Pollution Abatement Costs and Expenditures (PACE) survey to investigate the effects of air quality regulation on the air pollution abatement capital expenditures and operating costs of manufacturing plants from 1979-1988. Results, based on some 90,000 observations, show that heavy emitters of the 'criteria' air pollutants (covered under the Clean Air Act) had significantly larger APA costs, and those subject to greater 'local' regulation (due to county NAAQS non-attainment) had expenditures that were greater still. The local regulation of a particular air pollutant generally resulted in hundreds of thousands of dollars (or more) of additional costs, with larger establishments and capital expenditures disproportionately affected. Federal and state environmental standards appear to have played a notable role, particularly in industries producing chemicals, petroleum, primary metals, and nonmetallic minerals. The findings of this paper support those of several recent studies.
View Full
Paper PDF
-
Assessing Multi-Dimensional Performance: Environmental and Economic Outcomes
May 2005
Working Paper Number:
CES-05-03
This study examines the determinants of environmental and economic performance for plants in three traditional smoke-stack industries: pulp and paper, oil, and steel. We combine data from Census Bureau and EPA databases and Compustat on the economic performance, regulatory activity and environmental performance on air and water pollution emissions and toxic releases. We find that plants with higher labor productivity tend to have lower emissions. Regulatory enforcement actions (but not inspections) are associated with lower emissions, and state-level political support for environmental issues is associated with lower water pollution and toxic releases. There is little evidence that plants owned by larger firms perform better, nor do older plants perform worse.
View Full
Paper PDF
-
Returns to Scale in Small and Large U.S. Manufacturing Establishments
September 1990
Working Paper Number:
CES-90-11
The objective of this study is to assess the possibility of differences in the production technologies between large and small establishments in five selected 4-digit SIC manufacturing industries. We particularly focus on estimating returns to scale and then make interferences regarding the efficiency of small businesses relative to large businesses. Using cross-section data for two census years, 1977 and 1982, we estimate a transcendental logarithmic (translog) production model that provides direct estimates of economies of scale parameters for both small and large establishments. Our primary findings are: (i) there are significant differences in the production technologies between small and large establishments; and (ii) based on the scale parameter estimates, small establishments appear to be as efficient as large establishments under normal economic conditions, suggesting that large size is not a necessary condition for efficient production. However, small establishments seem to be unable to maintain constant returns to scale production during economic recession such as that in 1982.
View Full
Paper PDF
-
The Market for Corporate Assets: Who Engages in Mergers and Asset Sales and are there Efficiency Gains?
September 1999
Working Paper Number:
CES-99-12
We analyze the market for firms, divisions, and plants of manufacturing firms using a large sample of plant-level data for the period 1974-92. There is an active market for corporate assets, with over 7 percent of plants transacted through mergers and asset sales in expansion years in the economy. Transactions through partial firm sales represent more than half of these transactions. The probability of asset sales and full firm transactions is related to firm organization and buyer and seller ex ante productivity. We find that these transactions result in ex post productivity increases especially for asset sales from peripheral divisions of selling firms to main divisions of other buyers. Finally we find that productivity increases are significantly higher the more productive the buying firm. This timing of sales and the pattern of productivity gains suggests that the transactions that occur, especially through asset sales of plants and divisions, tend to improve the allocation of resources and are consistent with a simple neoclassic model of profit maximizing by firms. The decision to participate in the market for corporate assets and the subsequent gains realized from transactions are affected both by firm productivity and firm organization.
View Full
Paper PDF
-
What Determines Environmental Performance at Paper Mills? The Roles of Abatement Spending, Regulation, and Efficiency
April 2003
Working Paper Number:
CES-03-10
This paper examines the determinants of environmental performance at paper mills, measured by air pollution emissions per unit of output. We consider differences across plants in air pollution abatement expenditures, local regulatory stringency, and productive efficiency. Emissions are significantly lower in plants with a larger air pollution abatement capital stock: a 10 percent increase in abatement capital stock appears to reduce emissions by 6.9 percent. This translates into a sizable social return: one dollar of abatement capital stock is estimated to provide and annual return of about 75 cents in pollution reduction benefits. Local regulatory stringency and productive efficiency also matter: plants in non-attainment counties have 43 percent lower emissions and plants with 10 percent higher productivity have 2.5 percent lower emissions. For pollution abatement operating costs we find (puzzlingly) positive, but always insignificant, coefficients.
View Full
Paper PDF
-
Do Conglomerate Firms Allocate Resources Inefficiently?
February 1999
Working Paper Number:
CES-99-11
We develop a profit-maximizing neoclassical of optimal firm size and growth across different industries. The model predicts how conglomerate firms will allocate resources across divisions over the business cycle and how their responses to industry shocks will differ from those of single-segment firms. We test our model and find that growth of conglomerate and single-segment firms is related to neoclassical theory. Conglomerates grow less in a particular segment of their other segments are more productive and if their other segments experience a larger positive demand shock. We find that the growth rates of peripheral segments are very sensitive to relative productivity and that conglomerates sharply cut the growth of unproductive peripheral segments. We do find some evidence consistent with agency problems for conglomerate firms that are broken up. However, the majority of conglomerate firms exhibit growth across business segments that is consistent with optimal behavior.
View Full
Paper PDF
-
The Effects of Environmental Regulation on the Competiveness of U.S. Manufacturing
January 2011
Working Paper Number:
CES-11-03
Whether and to what extent environmental regulations influence the competitiveness of firms remains a hotly debated issue. Using detailed production data from tens of thousands of U.S. manufacturing plants drawn from Annual Survey of Manufactures, we estimate the effects of environmental regulations'captured by the Clean Air Act Amendments' division of counties into pollutant-specific nonattainment and attainment categories'on manufacturing plants' total factor productivity (TFP) levels. We find that among surviving polluting plants, a nonattainment designation is associated with a roughly 2.6 percent decline in TFP. The regulations governing ozone have particularly discernable effects on productivity, though effects are also seen among particulates and sulfur dioxide emitters. Carbon monoxide nonattainment, on the other hand, appears to increase measured TFP, though this appears to be concentrated among refineries. When we apply corrections for two likely sources of positive bias in these estimates (price mismeasurement and sample selection on survival), we estimate that the total TFP loss for polluting plants in nonattaining counties is 4.8 percent. This corresponds to an annual lost output in the manufacturing sector of roughly $14.7 billion in 1987 dollars ($24.4 billion in 2009 dollars). These costs have important implications for both the intensity and location of firm expansions.
View Full
Paper PDF
-
Fatal Errors: The Mortality Value of Accurate Weather Forecasts
June 2023
Working Paper Number:
CES-23-30
We provide the first revealed preference estimates of the benefits of routine weather forecasts. The benefits come from how people use advance information to reduce mor tality from heat and cold. Theoretically, more accurate forecasts reduce mortality if and only if mortality risk is convex in forecast errors. We test for such convexity using data on the universe of mortality events and weather forecasts for a twelve-year period in the U.S. Results show that erroneously mild forecasts increase mortality whereas erro neously extreme forecasts do not reduce mortality. Making forecasts 50% more accurate would save 2,200 lives per year. The public would be willing to pay $112 billion to make forecasts 50% more accurate over the remainder of the century, of which $22 billion reflects how forecasts facilitate adaptation to climate change.
View Full
Paper PDF