CREAT: Census Research Exploration and Analysis Tool

Climate Change, The Food Problem, and the Challenge of Adaptation through Sectoral Reallocation

September 2021

Written by: Ishan Nath

Working Paper Number:

CES-21-29

Abstract

This paper combines local temperature treatment effects with a quantitative macroeconomic model to assess the potential for global reallocation between agricultural and non-agricultural production to reduce the costs of climate change. First, I use firm-level panel data from a wide range of countries to show that extreme heat reduces productivity less in manufacturing and services than in agriculture, implying that hot countries could achieve large potential gains through adapting to global warming by shifting labor toward manufacturing and increasing imports of food. To investigate the likelihood that such gains will be realized, I embed the estimated productivity effects in a model of sectoral specialization and trade covering 158 countries. Simulations suggest that climate change does little to alter the geography of agricultural production, however, as high trade barriers in developing countries temper the influence of shifting comparative advantage. Instead, climate change accentuates the existing pattern, known as 'the food problem,' in which poor countries specialize heavily in relatively low productivity agricultural sectors to meet subsistence consumer needs. The productivity effects of climate change reduce welfare by 6-10% for the poorest quartile of the world with trade barriers held at current levels, but by nearly 70% less in an alternative policy counterfactual that moves low-income countries to OECD levels of trade openness.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
economist, econometric, macroeconomic, export, produce, sector, agriculture, country, agricultural, economically, gdp, farm

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Center for Economic Studies, Federal Reserve Bank, Organization for Economic Cooperation and Development, University of Chicago, Princeton University, United States Census Bureau, Federal Statistical Research Data Center

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Climate Change, The Food Problem, and the Challenge of Adaptation through Sectoral Reallocation' are listed below in order of similarity.