Papers Containing Keywords(s): 'electricity'
The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
See Working Papers by Tag(s), Keywords(s), Author(s), or Search Text
Click here to search again
Frequently Occurring Concepts within this Search
Gale Boyd - 6
Matt Doolin - 3
Viewing papers 1 through 10 of 15
-
Working PaperEmpirical Distribution of the Plant-Level Components of Energy and Carbon Intensity at the Six-digit NAICS Level Using a Modified KAYA Identity
September 2024
Working Paper Number:
CES-24-46
Three basic pillars of industry-level decarbonization are energy efficiency, decarbonization of energy sources, and electrification. This paper provides estimates of a decomposition of these three components of carbon emissions by industry: energy intensity, carbon intensity of energy, and energy (fuel) mix. These estimates are constructed at the six-digit NAICS level from non-public, plant-level data collected by the Census Bureau. Four quintiles of the distribution of each of the three components are constructed, using multiple imputation (MI) to deal with non-reported energy variables in the Census data. MI allows the estimates to avoid non-reporting bias. MI also allows more six-digit NAICS to be estimated under Census non-disclosure rules, since dropping non-reported observations may have reduced the sample sizes unnecessarily. The estimates show wide variation in each of these three components of emissions (intensity) and provide a first empirical look into the plant-level variation that underlies carbon emissions.View Full Paper PDF
-
Working PaperThe Impact of Industrial Opt-Out from Utility Sponsored Energy Efficiency Programs
October 2023
Working Paper Number:
CES-23-52
Industry accounts for one-third of energy consumption in the US. Studies suggest that energy efficiency opportunities represent a potential energy resource for regulated utilities and have resulted in rate of return regulated demand-side management (DSM) and energy efficiency (EE) programs. However, many large customers are allowed to self-direct or opt-out. In the Carolinas (NC and SC), over half of industrial and large commercial customers have selected to opt out. Although these customers claim they invest in EE improvements when it is economic and cost-effective to do so, there is no mechanism to validate whether they actually achieved energy savings. This project examines the industrial energy efficiency between the program participants and non participants in the Carolinas by utilizing the non-public Census of Manufacturing data and the public list of firms that have chosen to opt out. We compare the relative energy efficiency between the stay-in and opt-out plants. The t-test results suggest opt-out plants are less efficient. However, the opt-out decisions are not random; large plants or plants belonging to large firms are more likely to opt out, possibly because they have more information and resources. We conduct a propensity score matching method to account for factors that could affect the opt-out decisions. We find that the opt-out plants perform at least as well or slightly better than the stay-in plants. The relative performance of the opt-out firms suggest that they may not need utility program resources to obtain similar levels of efficiency from the stay-in group.View Full Paper PDF
-
Working PaperTechnology Lock-In and Costs of Delayed Climate Policy
July 2023
Working Paper Number:
CES-23-33
This paper studies the implications of current energy prices for future energy efficiency and climate policy. Using U.S. Census microdata and quasi-experimental variation in energy prices, we first show that manufacturing plants that open when electricity prices are low consume more energy throughout their lifetime, regardless of current electricity prices. We then estimate that a persistent bias of technological change toward energy can explain the long-term effects of entry-year electricity prices on energy intensity. Overall, this 'technology lock-in' implies that increasing entry-year electricity prices by 10% would decrease a plant's energy intensity of production by 3% throughout its lifetime.View Full Paper PDF
-
Working PaperThe U.S. Manufacturing Sector's Response to Higher Electricity Prices: Evidence from State-Level Renewable Portfolio Standards
October 2022
Working Paper Number:
CES-22-47
While several papers examine the effects of renewable portfolio standards (RPS) on electricity prices, they mainly rely on state-level data and there has been little research on how RPS policies affect manufacturing activity via their effect on electricity prices. Using plant-level data for the entire U.S. manufacturing sector and all electric utilities from 1992 ' 2015, we jointly estimate the effect of RPS adoption and stringency on plant-level electricity prices and production decisions. To ensure that our results are not sensitive to possible pre-existing differences across manufacturing plants in RPS and non-RPS states, we implement coarsened exact covariate matching. Our results suggest that electricity prices for plants in RPS states averaged about 2% higher than in non-RPS states, notably lower than prior estimates based on state-level data. In response to these higher electricity prices, we estimate that plant electricity usage declined by 1.2% for all plants and 1.8% for energy-intensive plants, broadly consistent with published estimates of the elasticity of electricity demand for industrial users. We find smaller declines in output, employment, and hours worked (relative to the decline in electricity use). Finally, several key RPS policy design features that vary substantially from state-to-state produce heterogeneous effects on plant-level electricity prices.View Full Paper PDF
-
Working PaperThe Energy Efficiency Gap and Energy Price Responsiveness in Food Processing
June 2020
Working Paper Number:
CES-20-18
This paper estimates stochastic frontier energy demand functions with non-public, plant-level data from the U.S. Census Bureau to measure the energy efficiency gap and energy price elasticities in the food processing industry. The estimates are for electricity and fuel use in 4 food processing sectors, based on the disaggregation of this industry used by the National Energy Modeling System Industrial Demand Module. The estimated demand functions control for plant inputs and output, energy prices, and other observables including 6-digit NAICS industry designations. Own price elasticities range from 0.6 to -0.9 with little evidence of fuel/electricity substitution. The magnitude of the efficiency estimates is sensitive to the assumptions but consistently reveal that few plants achieve 100% efficiency. Defining a 'practical level of energy efficiency' as the 95th percentile of the efficiency distributions and averaging across all the models result in a ~20% efficiency gap. However, most of the potential reductions in energy use from closing this efficiency gap are from plants that are 'low hanging fruit'; 13% of the 20% potential reduction in the efficiency gap can be obtained by bringing the lower half of the efficiency distribution up to just the median level of observed performance. New plants do exhibit higher energy efficiency than existing plants which is statistically significant, but the difference is small for most of the industry; ranging from a low of 0.4% to a high of 5.7%.View Full Paper PDF
-
Working PaperMeasuring Plant Level Energy Efficiency and Technical Change in the U.S. Metal-Based Durable Manufacturing Sector Using Stochastic Frontier Analysis
January 2016
Working Paper Number:
CES-16-52
This study analyzes the electric and thermal energy efficiency for five different metal-based durable manufacturing industries in the United States from 1987-2012 at the 3 digit North American Industry Classification System (NAICS) level. Using confidential plant-level data on energy use and production from the quinquennial U.S. Economic Census, a stochastic frontier regression analysis (SFA) is applied in six repeated cross sections for each five year census. The SFA controls for energy prices and climate-driven energy demand (heating degree days - HDD - and cooling degree days - CDD) due to differences in plant level locations, as well as 6-digit NAICS industry effects. A Malmquist index is used to decompose aggregate plant technical change in energy use into indices of efficiency and frontier (best practice) change. Own energy price elasticities range from -.7 to -1.0, with electricity tending to have slightly higher elasticity than fuel. Mean efficiency estimates (100 percent equals best practice level) range from a low of 32 percent (thermal 334 - Computer and Electronic Products) to a high of 86 percent (electricity 332 - Fabricated Metal Products). Electric efficiency is consistently better than thermal efficiency for all NAICS. There is no clear pattern to the decomposition of aggregate technical Thermal change. In some years efficiency improvement dominates; in other years aggregate technical change is driven by improvement in best practice.View Full Paper PDF
-
Working PaperCogeneration Technology Adoption in the U.S.
January 2016
Working Paper Number:
CES-16-30
Well over half of all electricity generated in recent years in Denmark is through cogeneration. In U.S., however, this number is only roughly eight percent. While both the federal and state governments provided regulatory incentives for more cogeneration adoption, the capacity added in the past five years have been the lowest since late 1970s. My goal is to first understand what are and their relative importance of the factors that drive cogeneration technology adoption, with an emphasis on estimating the elasticity of adoption with respect to relative energy input prices and regulatory factors. Very preliminary results show that with a 1 cent increase in purchased electricity price from 6 cents (roughly current average) to 7 cents per kwh, the likelihood of cogeneration technology adoption goes up by about 0.7-1 percent. Then I will try to address the general equilibrium effect of cogeneration adoption in the electricity generation sector as a whole and potentially estimate some key parameters that the social planner would need to determine the optimal cogeneration investment amount. Partial equilibrium setting does not consider the decrease in investment in the utilities sector when facing competition from the distributed electricity generators, and therefore ignore the effects from the change in equilibrium price of electricity. The competitive market equilibrium setting does not consider the externality in the reduction of CO2 emissions, and leads to socially sub-optimal investment in cogeneration. If we were to achieve the national goal to increase cogeneration capacity half of the current capacity by 2020, the US Department of Energy (DOE) estimated an annual reduction of 150 million metric tons of CO2 annually ' equivalent to the emissions from over 25 million cars. This is about five times the annual carbon reduction from deregulation and consolidation in the US nuclear power industry (Davis, Wolfram 2012). Although the DOE estimates could be an overly optimistic estimate, it nonetheless suggests the large potential in the adoption of cogeneration technology.View Full Paper PDF
-
Working PaperThe Impact of Heterogeneous NOx Regulations on Distributed Electricity Generation in U.S. Manufacturing
April 2015
Working Paper Number:
CES-15-12
The US EPA's command-and-control NOx policies of the early 1990s are associated with a 3.1 percentage point reduction in the likelihood of manufacturing plants vertically integrating the electricity generation process. During the same period California adopted a cap-and-trade program for NOx emissions that resulted in no significant impact on distributed electricity generation in manufacturing. These results suggest that traditional command-and-control approaches to air pollution may exacerbate other market failures such as the energy efficiency gap, because distributed generation is generally recognized as a more energy efficient means of producing electricityView Full Paper PDF
-
Working PaperEVIDENCE OF AN 'ENERGY-MANAGEMENT GAP' IN U.S. MANUFACTURING: SPILLOVERS FROM FIRM MANAGEMENT PRACTICES TO ENERGY EFFICIENCY
April 2013
Working Paper Number:
CES-13-25
In this paper we merge a well-cited survey of firm management practices into confidential U.S. Census microdata to examine whether generic, i.e. non-energy specific, firm management practices, 'spillover' to enhance energy efficiency in the United States. We find the relationship in U.S. plants to be more nuanced than past research on UK plants has suggested. Most management techniques have beneficial spillovers to energy efficiency, but an emphasis on generic targets, conditional on other management practices, results in spillovers that increase energy intensity. Our specification controls for industry specific effects at a detailed 6-digit NAICS level and shows that this result is stronger for firms in energy intensive industries. We interpret the empirical result that generic management practices do not necessarily spillover to improved energy performance as evidence of an 'energy management gap.'View Full Paper PDF
-
Working PaperProductivity Dispersion and Input Prices: The Case of Electricity
September 2008
Working Paper Number:
CES-08-33
We exploit a rich new database on Prices and Quantities of Electricity in Manufacturing (PQEM) to study electricity productivity in the U.S. manufacturing sector. The database contains nearly 2 million customer-level observations (i.e., manufacturing plants) from 1963 to 2000. It allows us to construct plant-level measures of price paid per kWh, output per kWh, output per dollar spent on electric power and labor productivity. Using this database, we first document tremendous dispersion among U.S. manufacturing plants in electricity productivity measures and a strong negative relationship between price per kWh and output per kWh hour within narrowly defined industries. Using an IV strategy to isolate exogenous price variation, we estimate that the average elasticity of output per kWh with respect to the price of electricity is about 0.6 during the period from 1985 to 2000. We also develop evidence that this price-physical efficiency tradeoff is stronger for industries with bigger electricity cost shares. Finally, we develop evidence that stronger competitive pressures in the output market lead to less dispersion among manufacturing plants in price per kWh and in electricity productivity measures. The strength of competition effects on dispersion is similar for electricity productivity and labor productivity.View Full Paper PDF