CREAT: Census Research Exploration and Analysis Tool

Sorting Between and Within Industries: A Testable Model of Assortative Matching

January 2017

Working Paper Number:

CES-17-43

Abstract

We test Shimer's (2005) theory of the sorting of workers between and within industrial sectors based on directed search with coordination frictions, deliberately maintaining its static general equilibrium framework. We fit the model to sector-specific wage, vacancy and output data, including publicly-available statistics that characterize the distribution of worker and employer wage heterogeneity across sectors. Our empirical method is general and can be applied to a broad class of assignment models. The results indicate that industries are the loci of sorting-more productive workers are employed in more productive industries. The evidence confirm that strong assortative matching can be present even when worker and employer components of wage heterogeneity are weakly correlated.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
economist, econometric, employed, employ, employee, job, heterogeneity, workplace, hiring, worker, salary, hire, wage variation, employment statistics, wage data


Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Sorting Between and Within Industries: A Testable Model of Assortative Matching' are listed below in order of similarity.