Big data offers potentially enormous benefits for improving economic measurement, but it also presents challenges (e.g., lack of representativeness and instability), implying that their value is not always clear. We propose a framework for quantifying the usefulness of these data sources for specific applications, relative to existing official sources. We specifically weigh the potential benefits of additional granularity and timeliness, while examining the accuracy associated with any new or improved estimates, relative to comparable accuracy produced in existing official statistics. We apply the methodology to employment estimates using data from a payroll processor, considering both the improvement of existing state-level estimates, but also the production of new, more timely, county-level estimates. We find that incorporating payroll data can improve existing state-level estimates by 11% based on out-of-sample mean absolute error, although the improvement is considerably higher for smaller state-industry cells. We also produce new county-level estimates that could provide more timely granular estimates than previously available. We develop a novel test to determine if these new county-level estimates have errors consistent with official series. Given the level of granularity, we cannot reject the hypothesis that the new county estimates have an accuracy in line with official measures, implying an expansion of the existing frontier. We demonstrate the practical importance of these experimental estimates by investigating a hypothetical application during the COVID-19 pandemic, a period in which more timely and granular information could have assisted in implementing effective policies. Relative to existing estimates, we find that the alternative payroll data series could help identify areas of the country where employment was lagging. Moreover, we also demonstrate the value of a more timely series.
-
Business Applications as a Leading Economic Indicator?
May 2021
Working Paper Number:
CES-21-09R
How are applications to start new businesses related to aggregate economic activity? This paper explores the properties of three monthly business application series from the U.S. Census Bureau's Business Formation Statistics as economic indicators: all business applications, business applications that are relatively likely to turn into new employer businesses ('likely employers'), and the residual series -- business applications that have a relatively low rate of becoming employers ('likely non-employers'). Growth in applications for likely employers significantly leads total nonfarm employment growth and has a strong positive correlation with it. Furthermore, growth in applications for likely employers leads growth in most of the monthly Principal Federal Economic Indicators (PFEIs). Motivated by our findings, we estimate a dynamic factor model (DFM) to forecast nonfarm employment growth over a 12-month period using the PFEIs and the likely employers series. The latter improves the model's forecast, especially in the years following the turning points of the Great Recession and the COVID-19 pandemic. Overall, applications for likely employers are a strong leading indicator of monthly PFEIs and aggregate economic activity, whereas applications for likely non-employers provide early information about changes in increasingly prevalent self-employment activity in the U.S. economy.
View Full
Paper PDF
-
Building the Census Bureau Index of Economic Activity (IDEA)
March 2023
Working Paper Number:
CES-23-15
The Census Bureau Index of Economic Activity (IDEA) is constructed from 15 of the Census Bureau's primary monthly economic time series. The index is intended to provide a single time series reflecting, to the extent possible, the variation over time in the whole set of component series. The component series provide monthly measures of activity in retail and wholesale trade, manufacturing, construction, international trade, and business formations. Most of the input series are Principal Federal Economic Indicators. The index is constructed by applying the method of principal components analysis (PCA) to the time series of monthly growth rates of the seasonally adjusted component series, after standardizing the growth rates to series with mean zero and variance 1. Similar PCA approaches have been used for the construction of other economic indices, including the Chicago Fed National Activity Index issued by the Federal Reserve Bank of Chicago, and the Weekly Economic Index issued by the Federal Reserve Bank of New York. While the IDEA is constructed from time series of monthly data, it is calculated and published every business day, and so is updated whenever a new monthly value is released for any of its component series. Since release dates of data values for a given month vary across the component series, with slight variations in the monthly release date for any one component series, updates to the index are frequent. It is unavoidably the case that, at almost all updates, some of the component series lack observations for the current (most recent) data month. To address this situation, component series that are one month behind are predicted (nowcast) for the current index month, using a multivariate autoregressive time series model. This report discusses the input series to the index, the construction of the index by PCA, and the nowcasting procedure used. The report then examines some properties of the index and its relation to quarterly U.S. Gross Domestic Product and to some monthly non-Census Bureau economic indicators.
View Full
Paper PDF
-
High-Growth Firms in the United States: Key Trends and New Data Opportunities
March 2024
Working Paper Number:
CES-24-11
Using administrative data from the U.S. Census Bureau, we introduce a new public-use database that tracks activities across firm growth distributions over time and by firm and establishment characteristics. With these new data, we uncover several key trends on high-growth firms'critical engines of innovation and economic growth. First, the share of firms that are high-growth has steadily decreased over the past four decades, driven not only by falling firm entry rates but also languishing growth among existing firms. Second, this decline is particularly pronounced among young and small firms, while the share of high-growth firms has been relatively stable among large and old firms. Third, the decline in high-growth firms is found in all sectors, but the information sector has shown a modest rebound beginning in 2010. Fourth, there is significant variation in high-growth firm activity across states, with California, Texas, and Florida having high shares of high-growth firms. We highlight several areas for future research enabled by these new data.
View Full
Paper PDF
-
Estimating A Multivariate Arma Model with Mixed-Frequency Data: An Application to Forecasting U.S. GNP at Monthly Intervals
July 1990
Working Paper Number:
CES-90-05
This paper develops and applies a method for directly estimating a multivariate, autoregressive moving-average (ARMA) model with mixed-frequency, time-series data. Unlike standard, single-frequency methods, the method does not require the data to be transformed to a single frequency (by temporally aggregating higher-frequency data to lower frequencies for interpolating lower-frequency data to higher frequencies) or the model to be restricted by frequency. Subject to computational constraints, the method can handle any number of variable and frequencies. In addition, variable can be treated as temporally aggregated and observed with errors and delays. The key to the method is to view lower-frequency data as periodically missing and to use the missing-data variant of the Kalman filter.
In the application, a bivariate, ARMA model is estimated with monthly observations on total employment and quarterly observations on real GNP, in the U.S., for January 1958 to December 1978. The estimated model is, then, used to compute monthly forecasts of the variables for 1 to 12 months ahead, for January 1979 to December 1988. Compared with GNP forecasts, in particular, for similar periods produced by established econometric and time series models, present GNP forecasts are generally more accurate for 1 to 4 months ahead and about equally or slightly less accurate for 5 to 12 months ahead. The application, thus, shows that the present method is tractable and able to effectively exploit cross-frequency sample information, in ARMA estimate and forecasting, which standard methods cannot exploit at all.
View Full
Paper PDF
-
JOB-TO-JOB (J2J) Flows: New Labor Market Statistics From Linked Employer-Employee Data
September 2014
Working Paper Number:
CES-14-34
Flows of workers across jobs are a principal mechanism by which labor markets allocate workers to optimize productivity. While these job flows are both large and economically important, they represent a significant gap in available economic statistics. A soon to be released data product from the U.S. Census Bureau will fill this gap. The Job-to-Job (J2J) flow statistics provide estimates of worker flows across jobs, across different geographic labor markets, by worker and firm characteristics, including direct job-to-job flows as well as job changes with intervening nonemployment. In this paper, we describe the creation of the public-use data product on job-to-job flows. The data underlying the statistics are the matched employer-employee data from the U.S. Census Bureau's Longitudinal Employer-Household Dynamics program. We describe definitional issues and the identification strategy for tracing worker movements between employers in administrative data. We then compare our data with related series and discuss similarities and differences. Lastly, we describe disclosure avoidance techniques for the public use file, and our methodology for estimating national statistics when there is partially missing geography.
View Full
Paper PDF
-
Recalculating... : How Uncertainty in Local Labor Market Definitions Affects Empirical Findings
January 2017
Working Paper Number:
CES-17-49R
This paper evaluates the use of commuting zones as a local labor market definition. We revisit Tolbert and Sizer (1996) and demonstrate the sensitivity of definitions to two features of the methodology: a cluster dissimilarity cutoff, or the count of clusters, and uncertainty in the input data. We show how these features impact empirical estimates using a standard application of commuting zones and an example from related literature. We conclude with advice to researchers on how to demonstrate the robustness of empirical findings to uncertainty in the definition of commuting zones
View Full
Paper PDF
-
Business Formation: A Tale of Two Recessions
January 2021
Working Paper Number:
CES-21-01
The trajectory of new business applications and transitions to employer businesses differ markedly during the Great Recession and COVID-19 Recession. Both applications and transitions to employer startups decreased slowly but persistently in the post-Lehman crisis period of the Great Recession. In contrast, during the COVID-19 Recession new applications initially declined but have since sharply rebounded, resulting in a surge in applications during 2020. Projected transitions to employer businesses also rise but this is dampened by a change in the composition of applications in 2020 towards applications that are more likely to be nonemployers.
View Full
Paper PDF
-
High Frequency Business Dynamics in the United States During the COVID-19 Pandemic
March 2021
Working Paper Number:
CES-21-06
Existing small businesses experienced very sharp declines in activity, business sentiment, and expectations early in the pandemic. While there has been some recovery since the early days of the pandemic, small businesses continued to exhibit indicators of negative growth, business sentiment, and expectations through the first week of January 2021. These findings are from a unique high frequency, real time survey of small employer businesses, the Census Bureau's Small Business Pulse Survey (SBPS). Findings from the SBPS show substantial variation across sectors in the outcomes for small businesses. Small businesses in Accommodation and Food Services have been hit especially hard relative to those Finance and Insurance. However, even in Finance and Insurance small businesses exhibit indicators of negative growth, business sentiment, and expectations for all weeks from late April 2020 through the first week of 2021. While existing small businesses have fared poorly, after an initial decline, there has been a surge in new business applications based on the high frequency, real time Business Formation Statistics (BFS). Most of these applications are for likely nonemployers that are out of scope for the SBPS. However, there has also been a surge in new applications for likely employers. The surge in applications has been especially apparent in Retail Trade (and especially Non-store Retailers). We compare and contrast the patterns from these two new high frequency data products that provide novel insights into the distinct patterns of dynamics for existing small businesses relative to new business formations.
View Full
Paper PDF
-
Industry Shakeouts after an Innovation Breakthrough
November 2024
Working Paper Number:
CES-24-70
Conventional wisdom suggests that after a technological breakthrough, the number of active firms first surges, and then sharply declines, in what is known as a 'shakeout'. This paper challenges that notion with new empirical evidence from across the U.S. economy, revealing that shakeouts are the exception, not the rule. I develop a statistical strategy to detect breakthroughs by isolating sustained anomalies in net firm entry rates, offering a robust alternative to narrative-driven approaches that can be applied to all industries. The results of this strategy, which reliably align with well-documented breakthroughs and remain consistent across various validation tests, uncover a novel trend: the number of entry-driven breakthroughs has been declining over time. The variability and frequent absence of shakeouts across breakthrough industries are consistent with breakthroughs primarily occurring in industries with low returns to scale and with modest learning curves, shifting the narrative on the nature of innovation over the past forty years in the U.S.
View Full
Paper PDF
-
An Analysis of Key Differences in Micro Data: Results from the Business List Comparison Project
September 2008
Working Paper Number:
CES-08-28
The Bureau of Labor Statistics and the Bureau of the Census each maintain a business register, a universe of all U.S. business establishments and their characteristics, created from independent sources. Both registers serve critical functions such as supplying aggregate data inputs for certain national statistics generated by the Bureau of Economic Analysis. This paper examines key micro-level differences across these two business registers.
View Full
Paper PDF