CREAT: Census Research Exploration and Analysis Tool

Papers written by Author(s): 'Eric English'

The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
Click here to search again

Viewing papers 1 through 2 of 2


  • Working Paper

    Credit Access in the United States

    July 2025

    Working Paper Number:

    CES-25-45

    We construct new population-level linked administrative data to study households' access to credit in the United States. These data reveal large differences in credit access by race, class, and hometown. By age 25, Black individuals, those who grew up in low-income families, and those who grew up in certain areas (including the Southeast and Appalachia) have significantly lower credit scores than other groups. Consistent with lower scores generating credit constraints, these individuals have smaller balances, more credit inquiries, higher credit card utilization rates, and greater use of alternative higher-cost forms of credit. Tests for alternative definitions of algorithmic bias in credit scores yield results in opposite directions. From a calibration perspective, group-level differences in credit scores understate differences in delinquency: conditional on a given credit score, Black individuals and those from low-income families fall delinquent at relatively higher rates. From a balance perspective, these groups receive lower credit scores even when comparing those with the same future repayment behavior. Addressing both of these biases and expanding credit access to groups with lower credit scores requires addressing group-level differences in delinquency rates. These delinquencies emerge soon after individuals access credit in their early twenties, often due to missed payments on credit cards, student loans, and other bills. Comprehensive measures of individuals' income profiles, income volatility, and observed wealth explain only a small portion of these repayment gaps. In contrast, we find that the large variation in repayment across hometowns mostly reflects the causal effect of childhood exposure to these places. Places that promote upward income mobility also promote repayment and expand credit access even conditional on income, suggesting that common place-level factors may drive behaviors in both credit and labor markets. We discuss suggestive evidence for several mechanisms that drive our results, including the role of social and cultural capital. We conclude that gaps in credit access by race, class, and hometown have roots in childhood environments.
    View Full Paper PDF
  • Working Paper

    Expanding the Frontier of Economic Statistics Using Big Data: A Case Study of Regional Employment

    July 2024

    Working Paper Number:

    CES-24-37

    Big data offers potentially enormous benefits for improving economic measurement, but it also presents challenges (e.g., lack of representativeness and instability), implying that their value is not always clear. We propose a framework for quantifying the usefulness of these data sources for specific applications, relative to existing official sources. We specifically weigh the potential benefits of additional granularity and timeliness, while examining the accuracy associated with any new or improved estimates, relative to comparable accuracy produced in existing official statistics. We apply the methodology to employment estimates using data from a payroll processor, considering both the improvement of existing state-level estimates, but also the production of new, more timely, county-level estimates. We find that incorporating payroll data can improve existing state-level estimates by 11% based on out-of-sample mean absolute error, although the improvement is considerably higher for smaller state-industry cells. We also produce new county-level estimates that could provide more timely granular estimates than previously available. We develop a novel test to determine if these new county-level estimates have errors consistent with official series. Given the level of granularity, we cannot reject the hypothesis that the new county estimates have an accuracy in line with official measures, implying an expansion of the existing frontier. We demonstrate the practical importance of these experimental estimates by investigating a hypothetical application during the COVID-19 pandemic, a period in which more timely and granular information could have assisted in implementing effective policies. Relative to existing estimates, we find that the alternative payroll data series could help identify areas of the country where employment was lagging. Moreover, we also demonstrate the value of a more timely series.
    View Full Paper PDF