Papers written by Author(s): 'Peter A. Zadrozny'
The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
See Working Papers by Tag(s), Keywords(s), Author(s), or Search Text
Click here to search again
Frequently Occurring Concepts within this Search
The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
No tags occur more than twice in this search.
No authors occur more than twice in this search.
Viewing papers 1 through 3 of 3
-
Working PaperEstimating A Multivariate Arma Model with Mixed-Frequency Data: An Application to Forecasting U.S. GNP at Monthly Intervals
July 1990
Working Paper Number:
CES-90-05
This paper develops and applies a method for directly estimating a multivariate, autoregressive moving-average (ARMA) model with mixed-frequency, time-series data. Unlike standard, single-frequency methods, the method does not require the data to be transformed to a single frequency (by temporally aggregating higher-frequency data to lower frequencies for interpolating lower-frequency data to higher frequencies) or the model to be restricted by frequency. Subject to computational constraints, the method can handle any number of variable and frequencies. In addition, variable can be treated as temporally aggregated and observed with errors and delays. The key to the method is to view lower-frequency data as periodically missing and to use the missing-data variant of the Kalman filter. In the application, a bivariate, ARMA model is estimated with monthly observations on total employment and quarterly observations on real GNP, in the U.S., for January 1958 to December 1978. The estimated model is, then, used to compute monthly forecasts of the variables for 1 to 12 months ahead, for January 1979 to December 1988. Compared with GNP forecasts, in particular, for similar periods produced by established econometric and time series models, present GNP forecasts are generally more accurate for 1 to 4 months ahead and about equally or slightly less accurate for 5 to 12 months ahead. The application, thus, shows that the present method is tractable and able to effectively exploit cross-frequency sample information, in ARMA estimate and forecasting, which standard methods cannot exploit at all.View Full Paper PDF
-
Working PaperAnalytic Derivatives for Estimation of Linear Dynamic Models
November 1988
Working Paper Number:
CES-88-05
This paper develops two algorithms. Algorithm I computes the exact, Gaussian, log-likelihood function, its exact, gradient vector, and an asymptotic approximation of its Hessian matrix, for discrete-time, linear, dynamic models in state-space form. Algorithm 2, derived from algorithm I, computes the exact, sample, information matrix of this likelihood function. The computed quantities are analytic (not numerical approximations) and should, therefore, be useful for reliably, quickly, and accurately: (i) checking local identifiability of parameters by checking the rank of the information matrix; (ii) using the gradient vector and Hessian matrix to compute maximum likelihood estimates of parameters with Newton methods; and, (iii) computing asymptotic covariances (Cramer-Rao bounds) of the parameter estimates with the Hessian or the information matrix. The principal contribution of the paper is algorithm 2, which extends to multivariate models the univariate results of Porat and Friedlander (1986). By relying on the Kalman filter instead of the Levinson-Durbin filter used by Porat and Friedlander, algorithms 1 and 2 can automatically handle any pattern of missing or linearly aggregated data. Although algorithm 1 is well known, it is treated in detail in order to make the paper self contained.View Full Paper PDF
-
Working PaperLong-Run Expectations And Capacity
April 1988
Working Paper Number:
CES-88-01
In this paper, we argue at a general level, that recent economic models of capacity and of its utilization are deficient because they do not adequately take into account firms' long-run expectations about conditions which are pertinent to their investment decisions, i.e., their decisions about altering productive capacity. We argue that the problem with these models is that they rely on the two conventional definitions of capacity which ignore these long-run expectations. Accordingly, we propose a third definition of capacity which incorporates these expectations and, thereby, corrects the problem. Furthermore, we argue that a correct, empirical analysis with the proposed definition -- indeed, any credible analysis of capacity or its utilization -- must take into account the demand for the output produced by the firms being studied. Finally, we apply the definition to clarify the meaning of surveys of capacity and, thus, show how it can be used to improve future surveys of capacity.View Full Paper PDF