In this paper, we argue at a general level, that recent economic models of capacity and of its utilization are deficient because they do not adequately take into account firms' long-run expectations about conditions which are pertinent to their investment decisions, i.e., their decisions about altering productive capacity. We argue that the problem with these models is that they rely on the two conventional definitions of capacity which ignore these long-run expectations. Accordingly, we propose a third definition of capacity which incorporates these expectations and, thereby, corrects the problem. Furthermore, we argue that a correct, empirical analysis with the proposed definition -- indeed, any credible analysis of capacity or its utilization -- must take into account the demand for the output produced by the firms being studied. Finally, we apply the definition to clarify the meaning of surveys of capacity and, thus, show how it can be used to improve future surveys of capacity.
-
Capital Structure And Product Market Rivalry: How Do We Reconcile Theory And Evidence?
February 1995
Working Paper Number:
CES-95-03
This paper presents empirical evidence on the interaction of capital structure decisions and product market behavior. We examine when firms recapitalize and increase the proportion of debt in their capital structure. The evidence in this paper shows that firms with low productivity plants in highly concentrated industries are more likely to recapitalize and increase debt financing. This finding suggests that debt plays a role in highly concentrated industries where agency costs are not significantly reduced by product market competition. Following the empirical evidence we introduce the "strategic investment" effects of debt and argue that this effect, in conjunction with agency costs, appears to fit the data.
View Full
Paper PDF
-
Technology Locks, Creative Destruction And Non-Convergence In Productivity Levels
April 1995
Working Paper Number:
CES-95-06
This paper presents a simple solution to a new model that seeks to explain the distribution of plants across productivity levels within an industry, and empirically confirms some key predictions using the U.S. textile industry. In the model, plants are locked into a given productivity level, until they exit or retool. Convex costs of adjustment captures the fact that more productive plants expand faster. Provided there is technical change, productivity levels do not converge; the model achieves persistent dispersion in productivity levels within the context of a distortion free competitive equilibrium. The equilibrium, however, is rather turbulent; plants continually come on line with the cutting edge technology, gradually expand and finally exit or retool when they cease to recover their variable costs. The more productive plants create jobs, while the less productive destroy them. The model establishes a close link between productivity growth and dispersion in productivity levels; more rapid productivity growth leads to more widespread dispersion. This prediction is empirically confirmed. Additionally, the model provides an explanation for S-shaped diffusion.
View Full
Paper PDF
-
Price Dispersion In U.S. Manufacturing: Implications For The Aggregation Of Products And Firms
March 1992
Working Paper Number:
CES-92-03
This paper addresses the question of whether products in the U.S. Manufacturing sector sell at a single (common) price, or whether prices vary across producers. Price dispersion is interesting for at least two reasons. First, if output prices vary across producers, standard methods of using industry price deflators lead to errors in measuring real output at the industry, firm, and establishment level which may bias estimates of the production function and productivity growth. Second, price dispersion suggests product heterogeneity which, if consumers do not have identical preferences, could lead to market segmentation and price in excess of marginal cost, thus making the current (competitive) characterization of the Manufacturing sector inappropriate and invalidating many empirical studies. In the course of examining these issues, the paper develops a robust measure of price dispersion as well as new quantitative methods for testing whether observed price differences are the result of differences in product quality. Our results indicate that price dispersion is widespread throughout manufacturing and that for at least one industry, Hydraulic Cement, it is not the result of differences in product quality.
View Full
Paper PDF
-
Modelling Technical Progress And Total Factor Productivity: A Plant Level Example
October 1988
Working Paper Number:
CES-88-04
Shifts in the production frontier occur because of changes in technology. A model of how a firm learns to use the new technology, or how it adapts from the first production frontier to the second, is suggested. Two different adaptation paths are embodied in a translog cost function and its attendant cost share equations. The paths are the traditional linear time trend and a learning curve. The model is estimated using establishment level data from a non-regulated industry that underwent a technological shift in the time period covered by the data. The learning curve resulted in more plausible estimates of technical progress and total factor productivity growth patterns. A significant finding is that, at the establishment level, all inputs appear to be substitutes.
View Full
Paper PDF
-
The Structure Of Technology, Substitution, And Productivity In The Interstate Natural Gas Transmission Industry Under The NGPA Of 1978
August 1992
Working Paper Number:
CES-92-09
The structure of production in the natural gas transmission industry is estimated using the dual restricted cost function based on panel data for twenty four firms. A standard translog variable cost function with firm fixed effects is augmented with controls for capacity utilization, technical change, and shifting regulatory regimes. During the implementation of the Natural Gas Policy Act (NGPA), 1978-1985, the industry exhibited no significant increase in productivity, largely attributable to the decline in output for the industry. Regulatory efforts to promote voluntary non-contract transmission appear to have enabled some firms to mitigate the overall industry productivity stagnation. The NGPA instituted a complex schedule of partial and gradual decontrol of natural gas prices at the well head. This form of deregulation costs natural gas producers over $100 billion in lost revenues, relative to immediate and full price deregulation. However, the transmission firms benefited by paying $1.5 billion less for natural gas than they would have under total deregulation. The benefits to consumers, totaling $98.7 billion, were unevenly distributed. On average, for the 1978-1985 period, utilities, commercial, and industrial users paid less for their gas than they would have under total decontrol and residential users paid $8.6 billion more. The NGPA and Federal Regulatory Commission oversight practices allow the transmission industry to price discriminate among customers.
View Full
Paper PDF
-
Technical Inefficiency And Productive Decline In The U.S. Interstate Natural Gas Pipeline Industry Under The Natural Gas Policy Act
October 1991
Working Paper Number:
CES-91-06
The U.S. natural gas industry has undergone substantial change since the enactment of the Natural Gas Policy Act of 1978. Although the major focus of the NGPA was to initiate partial and gradual price deregulation of natural gas at the well-head, the interstate transmission industry was profoundly affected by changes in the relative prices of competing fuels and contractual relationships among producers, transporters, distributors, and end-users. This paper assesses the impact of the NGPA on the technical efficiency and productivity of fourteen interstate natural gas transmission firms for the period 1978-1985. We focus on the distortionary effects that resulted in the industry during a period in which changes in regulatory policy could neither anticipate changing market conditions nor rapidly adjust to those changes. Two alternative estimating methodologies, stochastic frontier production analysis and data envelopment analysis, are used to measure the firm-specific and temporal distortionary effects. Concordant findings from these alternative methodologies suggest a pervasive pattern of declining technical efficiency in the industry during the period in which this major regulatory intervention was introduced and implemented. The representative firms experience an average annual decline in efficiency of .55 percent over the sample period. In addition, it appears that the industry suffered a decline in productivity during the sample period, averaging -1.18 percent annually.
View Full
Paper PDF
-
An Empirical Analysis of Capacity Costs
January 2017
Working Paper Number:
CES-17-26
A central premise of management accounting is that including the cost of unused capacity in product costs can distort these costs and misguide users. Yet, there is little large-scale empirical evidence on the materiality of the cost of unused capacity. This study uses a confidential Census sample of 151,900 U.S. manufacturing plants from 1974-2011 to investigate the impact of separating the cost of unused capacity. We find that excluding the cost of unused capacity increases operating profit margins by approximately 26 percent. This order of magnitude is economically significant, and is pervasive across industries and over time. In additional analyses, we find that separating the cost of unused capacity largely smooths the time-series variation in unitized product costs and profit margins. Our finding of higher mean and lower variation of adjusted margins should be of considerable interest to both investors and managers.
View Full
Paper PDF
-
The Life Cycles of Industrial Plants
October 2001
Working Paper Number:
CES-01-10
The paper presents a dynamic programming model with multiple classes of capital goods to explain capital expenditures on existing plants over their lives. The empirical specification shows that the path of capital expenditures is explained by (a) complementarities between old and new capital goods, (b) the age of plants, (c) an index that captures the rate of technical change and (d) the labor intensiveness of a plant when it is newly born. The model is tested with Census data for roughly 6,000 manufacturing plants that were born after 1972.
View Full
Paper PDF
-
Factor Substitution In U.S. Manufacturing: Does Plant Size Matter
April 1998
Working Paper Number:
CES-98-06
We use micro data for 10,412 U.S. manufacturing plants to estimate the degrees of factor substitution by industry and by plant size. We find that (1) capital, labor, energy and materials are substitutes in production, and (2) the degrees of substitution among inputs are quite similar across plant sizes in a majority of industries. Two important implications of these findings are that (1) small plants are typically as flexible as large plants in factor substitution; consequently, economic policies such energy conservation policies that result in rising energy prices would not cause negative effects on either large or small U.S. manufacturing plants; and (2) since energy and capital are found to be substitutes; the 1973 energy crisis is unlikely to be a significant factor contributing to the post 1973 productivity slowdown. of Substitution
View Full
Paper PDF
-
Using the Survey of Plant Capacity to Measure Capital Utilization
July 2011
Working Paper Number:
CES-11-19
Most capital in the United States is idle much of the time. By some measures, the average workweek of capital in U.S. manufacturing is as low as 55 hours per 168 hour week. The level and variability of capital utilization has important implications for understanding both the level of production and its cyclical fluctuations. This paper investigates a number of issues relating to aggregation of capital utilization measures from the Survey of Plant Capacity and makes recommendations on expanding and improving the published statistics deriving from the Survey of Plant Capacity. The paper documents a number of facts about properties of capital utilization. First, after growing for decades, capital utilization started to fall in mid 1990s. Second, capital utilization is a useful predictor of changes in capacity utilization and other factors of production. Third, adjustment of productivity measures for variable capital utilization improves statistical and economic properties of these measures. Fourth, the paper constructs weights to aggregate firm level capital utilization rates to industry and economy level, which is the major enhancement to available data.
View Full
Paper PDF