CREAT: Census Research Exploration and Analysis Tool

Analytic Derivatives for Estimation of Linear Dynamic Models

November 1988

Written by: Peter A. Zadrozny

Working Paper Number:

CES-88-05

Abstract

This paper develops two algorithms. Algorithm I computes the exact, Gaussian, log-likelihood function, its exact, gradient vector, and an asymptotic approximation of its Hessian matrix, for discrete-time, linear, dynamic models in state-space form. Algorithm 2, derived from algorithm I, computes the exact, sample, information matrix of this likelihood function. The computed quantities are analytic (not numerical approximations) and should, therefore, be useful for reliably, quickly, and accurately: (i) checking local identifiability of parameters by checking the rank of the information matrix; (ii) using the gradient vector and Hessian matrix to compute maximum likelihood estimates of parameters with Newton methods; and, (iii) computing asymptotic covariances (Cramer-Rao bounds) of the parameter estimates with the Hessian or the information matrix. The principal contribution of the paper is algorithm 2, which extends to multivariate models the univariate results of Porat and Friedlander (1986). By relying on the Kalman filter instead of the Levinson-Durbin filter used by Porat and Friedlander, algorithms 1 and 2 can automatically handle any pattern of missing or linearly aggregated data. Although algorithm 1 is well known, it is treated in detail in order to make the paper self contained.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Analytic Derivatives for Estimation of Linear Dynamic Models' are listed below in order of similarity.