How are applications to start new businesses related to aggregate economic activity? This paper explores the properties of three monthly business application series from the U.S. Census Bureau's Business Formation Statistics as economic indicators: all business applications, business applications that are relatively likely to turn into new employer businesses ('likely employers'), and the residual series -- business applications that have a relatively low rate of becoming employers ('likely non-employers'). Growth in applications for likely employers significantly leads total nonfarm employment growth and has a strong positive correlation with it. Furthermore, growth in applications for likely employers leads growth in most of the monthly Principal Federal Economic Indicators (PFEIs). Motivated by our findings, we estimate a dynamic factor model (DFM) to forecast nonfarm employment growth over a 12-month period using the PFEIs and the likely employers series. The latter improves the model's forecast, especially in the years following the turning points of the Great Recession and the COVID-19 pandemic. Overall, applications for likely employers are a strong leading indicator of monthly PFEIs and aggregate economic activity, whereas applications for likely non-employers provide early information about changes in increasingly prevalent self-employment activity in the U.S. economy.
-
Building the Census Bureau Index of Economic Activity (IDEA)
March 2023
Working Paper Number:
CES-23-15
The Census Bureau Index of Economic Activity (IDEA) is constructed from 15 of the Census Bureau's primary monthly economic time series. The index is intended to provide a single time series reflecting, to the extent possible, the variation over time in the whole set of component series. The component series provide monthly measures of activity in retail and wholesale trade, manufacturing, construction, international trade, and business formations. Most of the input series are Principal Federal Economic Indicators. The index is constructed by applying the method of principal components analysis (PCA) to the time series of monthly growth rates of the seasonally adjusted component series, after standardizing the growth rates to series with mean zero and variance 1. Similar PCA approaches have been used for the construction of other economic indices, including the Chicago Fed National Activity Index issued by the Federal Reserve Bank of Chicago, and the Weekly Economic Index issued by the Federal Reserve Bank of New York. While the IDEA is constructed from time series of monthly data, it is calculated and published every business day, and so is updated whenever a new monthly value is released for any of its component series. Since release dates of data values for a given month vary across the component series, with slight variations in the monthly release date for any one component series, updates to the index are frequent. It is unavoidably the case that, at almost all updates, some of the component series lack observations for the current (most recent) data month. To address this situation, component series that are one month behind are predicted (nowcast) for the current index month, using a multivariate autoregressive time series model. This report discusses the input series to the index, the construction of the index by PCA, and the nowcasting procedure used. The report then examines some properties of the index and its relation to quarterly U.S. Gross Domestic Product and to some monthly non-Census Bureau economic indicators.
View Full
Paper PDF
-
Starting Up AI
March 2024
Working Paper Number:
CES-24-09R
Using comprehensive administrative data on business applications over the period 2004- 2023, we study business applications (ideas) and the resulting startups that aim to develop AI technologies or produce goods or services that use, integrate, or rely on AI. The annual number of new AI-related business applications is stable between 2004 and 2011, but begins to rise in 2012 with further increases from 2016 onward into the Covid-19 pandemic and beyond, with a large, discrete jump in 2023. The distribution of these applications is highly uneven across states and sectors. AI business applications have a higher likelihood of becoming employer startups compared to other applications. Moreover, businesses originating from these applications exhibit higher revenue, average wage, and labor share, but similar labor productivity and lower survival rate, compared to other businesses. While it is still early in the diffusion of AI, the rapid rise in AI business applications, combined with the better performance of resulting businesses in several key outcomes, suggests a growing contribution from AI-related business formation to business dynamism.
View Full
Paper PDF
-
Early-Stage Business Formation: An Analysis of Applications for Employer Identification Numbers
December 2018
Working Paper Number:
CES-18-52
This paper reports on the development and analysis of a newly constructed dataset on the early stages of business formation. The data are based on applications for Employer Identification Numbers (EINs) submitted in the United States, known as IRS Form SS-4 filings. The goal of the research is to develop high-frequency indicators of business formation at the national, state, and local levels. The analysis indicates that EIN applications provide forward-looking and very timely information on business formation. The signal of business formation provided by counts of applications is improved by using the characteristics of the applications to model the likelihood that applicants become employer businesses. The results also suggest that EIN applications are related to economic activity at the local level. For example, application activity is higher in counties that experienced higher employment growth since the end of the Great Recession, and application counts grew more rapidly in counties engaged in shale oil and gas extraction. Finally, the paper provides a description of new public-use dataset, the 'Business Formation Statistics (BFS),' that contains new data series on business applications and formation. The initial release of the BFS shows that the number of business applications in the 3rd quarter of 2017 that have relatively high likelihood of becoming job creators is still far below pre-Great Recession levels.
View Full
Paper PDF
-
Business Formation: A Tale of Two Recessions
January 2021
Working Paper Number:
CES-21-01
The trajectory of new business applications and transitions to employer businesses differ markedly during the Great Recession and COVID-19 Recession. Both applications and transitions to employer startups decreased slowly but persistently in the post-Lehman crisis period of the Great Recession. In contrast, during the COVID-19 Recession new applications initially declined but have since sharply rebounded, resulting in a surge in applications during 2020. Projected transitions to employer businesses also rise but this is dampened by a change in the composition of applications in 2020 towards applications that are more likely to be nonemployers.
View Full
Paper PDF
-
High Frequency Business Dynamics in the United States During the COVID-19 Pandemic
March 2021
Working Paper Number:
CES-21-06
Existing small businesses experienced very sharp declines in activity, business sentiment, and expectations early in the pandemic. While there has been some recovery since the early days of the pandemic, small businesses continued to exhibit indicators of negative growth, business sentiment, and expectations through the first week of January 2021. These findings are from a unique high frequency, real time survey of small employer businesses, the Census Bureau's Small Business Pulse Survey (SBPS). Findings from the SBPS show substantial variation across sectors in the outcomes for small businesses. Small businesses in Accommodation and Food Services have been hit especially hard relative to those Finance and Insurance. However, even in Finance and Insurance small businesses exhibit indicators of negative growth, business sentiment, and expectations for all weeks from late April 2020 through the first week of 2021. While existing small businesses have fared poorly, after an initial decline, there has been a surge in new business applications based on the high frequency, real time Business Formation Statistics (BFS). Most of these applications are for likely nonemployers that are out of scope for the SBPS. However, there has also been a surge in new applications for likely employers. The surge in applications has been especially apparent in Retail Trade (and especially Non-store Retailers). We compare and contrast the patterns from these two new high frequency data products that provide novel insights into the distinct patterns of dynamics for existing small businesses relative to new business formations.
View Full
Paper PDF
-
The Local Origins of Business Formation
July 2023
Working Paper Number:
CES-23-34
What locations generate more business ideas, and where are ideas more likely to turn into businesses? Using comprehensive administrative data on business applications, we analyze the spatial disparity in the creation of business ideas and the formation of new employer startups from these ideas. Startups per capita exhibit enormous variation across granular units of geography. We decompose this variation into variation in ideas per capita and in their rate of transition to startups, and find that both components matter. Observable local demographic, economic, financial, and business conditions accounts for a significant fraction of the variation in startups per capita, and more so for the variation in ideas per capita than in transition rate. Income, education, age, and foreign-born share are generally strong positive correlates of both idea generation and transition. Overall, the relationship of local conditions with ideas differs from that with transition rate in magnitude, and sometimes, in sign: certain conditions (notably, the African-American share of the population) are positively associated with ideas, but negatively with transition rates. We also find a close correspondence between the actual rank of locations in terms of startups per capita and the predicted rank based only on observable local conditions ' a result useful for characterizing locations with high startup activity.
View Full
Paper PDF
-
Tracking Firm Use of AI in Real Time: A Snapshot from the Business Trends and Outlook Survey
March 2024
Working Paper Number:
CES-24-16R
Timely and accurate measurement of AI use by firms is both challenging and crucial for understanding the impacts of AI on the U.S. economy. We provide new, real-time estimates of current and expected future use of AI for business purposes based on the Business Trends and Outlook Survey for September 2023 to February 2024. During this period, bi-weekly estimates of AI use rate rose from 3.7% to 5.4%, with an expected rate of about 6.6% by early Fall 2024. The fraction of workers at businesses that use AI is higher, especially for large businesses and in the Information sector. AI use is higher in large firms but the relationship between AI use and firm size is non-monotonic. In contrast, AI use is higher in young firms. Common uses of AI include marketing automation, virtual agents, and data/text analytics. AI users often utilize AI to substitute for worker tasks and equipment/software, but few report reductions in employment due to AI use. Many firms undergo organizational changes to accommodate AI, particularly by training staff, developing new workflows, and purchasing cloud services/storage. AI users also exhibit better overall performance and higher incidence of employment expansion compared to other businesses. The most common reason for non-adoption is the inapplicability of AI to the business.
View Full
Paper PDF
-
Estimating A Multivariate Arma Model with Mixed-Frequency Data: An Application to Forecasting U.S. GNP at Monthly Intervals
July 1990
Working Paper Number:
CES-90-05
This paper develops and applies a method for directly estimating a multivariate, autoregressive moving-average (ARMA) model with mixed-frequency, time-series data. Unlike standard, single-frequency methods, the method does not require the data to be transformed to a single frequency (by temporally aggregating higher-frequency data to lower frequencies for interpolating lower-frequency data to higher frequencies) or the model to be restricted by frequency. Subject to computational constraints, the method can handle any number of variable and frequencies. In addition, variable can be treated as temporally aggregated and observed with errors and delays. The key to the method is to view lower-frequency data as periodically missing and to use the missing-data variant of the Kalman filter.
In the application, a bivariate, ARMA model is estimated with monthly observations on total employment and quarterly observations on real GNP, in the U.S., for January 1958 to December 1978. The estimated model is, then, used to compute monthly forecasts of the variables for 1 to 12 months ahead, for January 1979 to December 1988. Compared with GNP forecasts, in particular, for similar periods produced by established econometric and time series models, present GNP forecasts are generally more accurate for 1 to 4 months ahead and about equally or slightly less accurate for 5 to 12 months ahead. The application, thus, shows that the present method is tractable and able to effectively exploit cross-frequency sample information, in ARMA estimate and forecasting, which standard methods cannot exploit at all.
View Full
Paper PDF
-
JOB-TO-JOB (J2J) Flows: New Labor Market Statistics From Linked Employer-Employee Data
September 2014
Working Paper Number:
CES-14-34
Flows of workers across jobs are a principal mechanism by which labor markets allocate workers to optimize productivity. While these job flows are both large and economically important, they represent a significant gap in available economic statistics. A soon to be released data product from the U.S. Census Bureau will fill this gap. The Job-to-Job (J2J) flow statistics provide estimates of worker flows across jobs, across different geographic labor markets, by worker and firm characteristics, including direct job-to-job flows as well as job changes with intervening nonemployment. In this paper, we describe the creation of the public-use data product on job-to-job flows. The data underlying the statistics are the matched employer-employee data from the U.S. Census Bureau's Longitudinal Employer-Household Dynamics program. We describe definitional issues and the identification strategy for tracing worker movements between employers in administrative data. We then compare our data with related series and discuss similarities and differences. Lastly, we describe disclosure avoidance techniques for the public use file, and our methodology for estimating national statistics when there is partially missing geography.
View Full
Paper PDF
-
Measuring the Effect of COVID-19 on U.S. Small Businesses: The Small Business Pulse Survey
May 2020
Working Paper Number:
CES-20-16
In response to the novel coronavirus (COVID-19) pandemic, the Census Bureau developed and fielded an entirely new survey intended to measure the effect on small businesses. The Small Business Pulse Survey (SBPS) will run weekly from April 26 to June 27, 2020. Results from the SBPS will be published weekly through a visualization tool with downloadable data. We describe the motivation for SBPS, summarize how the content for the survey was developed, and discuss some of the initial results from the survey. We also describe future plans for the SBPS collections and for our research using the SBPS data. Estimates from the first week of the SBPS indicate large to moderate negative effects of COVID-19 on small businesses, and yet the majority expect to return to usual level of operations within the next six months. Reflecting the Census Bureau's commitment to scientific inquiry and transparency, the micro data from the SBPS will be available to qualified researchers on approved projects in the Federal Statistical Research Data Center network.
View Full
Paper PDF