-
The Icing on the Cake: The Effects of Monetary Incentives on Income Data Quality in the SIPP
January 2024
Working Paper Number:
CES-24-03
Accurate measurement of key income variables plays a crucial role in economic research and policy decision-making. However, the presence of item nonresponse and measurement error in survey data can cause biased estimates. These biases can subsequently lead to sub-optimal policy decisions and inefficient allocation of resources. While there have been various studies documenting item nonresponse and measurement error in economic data, there have not been many studies investigating interventions that could reduce item nonresponse and measurement error. In our research, we investigate the impact of monetary incentives on reducing item nonresponse and measurement error for labor and investment income in the Survey of Income and Program Participation (SIPP). Our study utilizes a randomized incentive experiment in Waves 1 and 2 of the 2014 SIPP, which allows us to assess the effectiveness of incentives in reducing item nonresponse and measurement error. We find that households receiving incentives had item nonresponse rates that are 1.3 percentage points lower for earnings and 1.5 percentage points lower for Social Security income. Measurement error was 6.31 percentage points lower at the intensive margin for interest income, and 16.48 percentage points lower for dividend income compared to non-incentive recipient households. These findings provide valuable insights for data producers and users and highlight the importance of implementing strategies to improve data quality in economic research.
View Full
Paper PDF
-
Building the Census Bureau Index of Economic Activity (IDEA)
March 2023
Working Paper Number:
CES-23-15
The Census Bureau Index of Economic Activity (IDEA) is constructed from 15 of the Census Bureau's primary monthly economic time series. The index is intended to provide a single time series reflecting, to the extent possible, the variation over time in the whole set of component series. The component series provide monthly measures of activity in retail and wholesale trade, manufacturing, construction, international trade, and business formations. Most of the input series are Principal Federal Economic Indicators. The index is constructed by applying the method of principal components analysis (PCA) to the time series of monthly growth rates of the seasonally adjusted component series, after standardizing the growth rates to series with mean zero and variance 1. Similar PCA approaches have been used for the construction of other economic indices, including the Chicago Fed National Activity Index issued by the Federal Reserve Bank of Chicago, and the Weekly Economic Index issued by the Federal Reserve Bank of New York. While the IDEA is constructed from time series of monthly data, it is calculated and published every business day, and so is updated whenever a new monthly value is released for any of its component series. Since release dates of data values for a given month vary across the component series, with slight variations in the monthly release date for any one component series, updates to the index are frequent. It is unavoidably the case that, at almost all updates, some of the component series lack observations for the current (most recent) data month. To address this situation, component series that are one month behind are predicted (nowcast) for the current index month, using a multivariate autoregressive time series model. This report discusses the input series to the index, the construction of the index by PCA, and the nowcasting procedure used. The report then examines some properties of the index and its relation to quarterly U.S. Gross Domestic Product and to some monthly non-Census Bureau economic indicators.
View Full
Paper PDF
-
Rising Markups or Changing Technology?
September 2022
Working Paper Number:
CES-22-38R
Recent evidence suggests the U.S. business environment is changing, with rising market concentration and markups. The most prominent and extensive evidence backs out firm-level markups from the first-order conditions for variable factors. The markup is identified as the ratio of the variable factor's output elasticity to its cost share of revenue. Our analysis starts from this indirect approach, but we exploit a long panel of manufacturing establishments to permit output elasticities to vary to a much greater extent - relative to the existing literature - across establishments within the same industry over time. With our more detailed estimates of output elasticities, the measured increase in markups is substantially dampened, if not eliminated, for U.S. manufacturing. As supporting evidence, we relate differences in the markups' patterns to observable changes in technology (e.g., computer investment per worker, capital intensity, diversification to non-manufacturing) and find patterns in support of changing technology as the driver of those differences.
View Full
Paper PDF
-
Business Applications as a Leading Economic Indicator?
May 2021
Working Paper Number:
CES-21-09R
How are applications to start new businesses related to aggregate economic activity? This paper explores the properties of three monthly business application series from the U.S. Census Bureau's Business Formation Statistics as economic indicators: all business applications, business applications that are relatively likely to turn into new employer businesses ('likely employers'), and the residual series -- business applications that have a relatively low rate of becoming employers ('likely non-employers'). Growth in applications for likely employers significantly leads total nonfarm employment growth and has a strong positive correlation with it. Furthermore, growth in applications for likely employers leads growth in most of the monthly Principal Federal Economic Indicators (PFEIs). Motivated by our findings, we estimate a dynamic factor model (DFM) to forecast nonfarm employment growth over a 12-month period using the PFEIs and the likely employers series. The latter improves the model's forecast, especially in the years following the turning points of the Great Recession and the COVID-19 pandemic. Overall, applications for likely employers are a strong leading indicator of monthly PFEIs and aggregate economic activity, whereas applications for likely non-employers provide early information about changes in increasingly prevalent self-employment activity in the U.S. economy.
View Full
Paper PDF
-
Total Error and Variability Measures for the Quarterly Workforce Indicators and LEHD Origin Destination Employment Statistics in OnTheMap
September 2020
Working Paper Number:
CES-20-30
We report results from the first comprehensive total quality evaluation of five major indicators in the U.S. Census Bureau's Longitudinal Employer-Household Dynamics (LEHD) Program Quarterly Workforce Indicators (QWI): total flow-employment, beginning-of-quarter employment, full quarter employment, average monthly earnings of full-quarter employees, and total quarterly payroll. Beginning-of-quarter employment is also the main tabulation variable in the LEHD Origin-Destination Employment Statistics (LODES) workplace reports as displayed in On-TheMap (OTM), including OnTheMap for Emergency Management. We account for errors due to coverage; record-level non response; edit and imputation of item missing data; and statistical disclosure limitation. The analysis reveals that the five publication variables under study are estimated very accurately for tabulations involving at least 10 jobs. Tabulations involving three to nine jobs are a transition zone, where cells may be fit for use with caution. Tabulations involving one or two jobs, which are generally suppressed on fitness-for-use criteria in the QWI and synthesized in LODES, have substantial total variability but can still be used to estimate statistics for untabulated aggregates as long as the job count in the aggregate is more than 10.
View Full
Paper PDF
-
Re-engineering Key National Economic Indicators
July 2019
Working Paper Number:
CES-19-22
Traditional methods of collecting data from businesses and households face increasing challenges. These include declining response rates to surveys, increasing costs to traditional modes of data collection, and the difficulty of keeping pace with rapid changes in the economy. The digitization of virtually all market transactions offers the potential for re-engineering key national economic indicators. The challenge for the statistical system is how to operate in this data-rich environment. This paper focuses on the opportunities for collecting item-level data at the source and constructing key indicators using measurement methods consistent with such a data infrastructure. Ubiquitous digitization of transactions allows price and quantity be collected or aggregated simultaneously at the source. This new architecture for economic statistics creates challenges arising from the rapid change in items sold. The paper explores some recently proposed techniques for estimating price and quantity indices in large scale item-level data. Although those methods display tremendous promise, substantially more research is necessary before they will be ready to serve as the basis for the official economic statistics. Finally, the paper addresses implications for building national statistics from transactions for data collection and for the capabilities and organization of the statistical agencies in the 21st century.
View Full
Paper PDF
-
Total Error and Variability Measures with Integrated Disclosure Limitation for Quarterly Workforce Indicators and LEHD Origin Destination Employment Statistics in On The Map
January 2017
Working Paper Number:
CES-17-71
We report results from the rst comprehensive total quality evaluation of five major indicators in the U.S. Census Bureau's Longitudinal Employer-Household Dynamics (LEHD) Program Quarterly Workforce Indicators (QWI): total employment, beginning-of-quarter employment, full-quarter employment, total payroll, and average monthly earnings of full-quarter employees. Beginning-of-quarter employment is also the main tabulation variable in the LEHD Origin-Destination Employment Statistics (LODES) workplace reports as displayed in OnTheMap (OTM). The evaluation is conducted by generating multiple threads of the edit and imputation models used in the LEHD Infrastructure File System. These threads conform to the Rubin (1987) multiple imputation model, with each thread or implicate being the output of formal probability models that address coverage, edit, and imputation errors. Design-based sampling variability and nite population corrections are also included in the evaluation. We derive special formulas for the Rubin total variability and its components that are consistent with the disclosure avoidance system used for QWI and LODES/OTM workplace reports. These formulas allow us to publish the complete set of detailed total quality measures for QWI and LODES. The analysis reveals that the five publication variables under study are estimated very accurately for tabulations involving at least 10 jobs. Tabulations involving three to nine jobs have quality in the range generally deemed acceptable. Tabulations involving zero, one or two jobs, which are generally suppressed in the QWI and synthesized in LODES, have substantial total variability but their publication in LODES allows the formation of larger custom aggregations, which will in general have the accuracy estimated for tabulations in the QWI based on a similar number of workers.
View Full
Paper PDF
-
Revisiting the Effects of Unemployment Insurance Extensions on Unemployment: A Measurement Error-Corrected Regression Discontinuity Approach
March 2016
Working Paper Number:
carra-2016-01
The extension of Unemployment Insurance (UI) benefits was a key policy response to the Great Recession. However, these benefit extensions may have had detrimental labor market effects. While evidence on the individual labor supply response indicates small effects on unemployment, recent work by Hagedorn et al. (2015) uses a county border pair identification strategy to find that the total effects inclusive of effects on labor demand are substantially larger. By focusing on variation within border county pairs, this identification strategy requires counties in the pairs to be similar in terms of unobservable factors. We explore this assumption using an alternative regression discontinuity approach that controls for changes in unobservables by distance to the border. To do so, we must account for measurement error induced by using county-level aggregates. These new results provide no evidence of a large change in unemployment induced by differences in UI generosity across state boundaries. Further analysis suggests that individuals respond to UI benefit differences across boundaries by targeting job search in high-benefit states, thereby raising concerns of treatment spillovers in this setting. Taken together, these two results suggest that the effect of UI benefit extensions on unemployment remains an open question.
View Full
Paper PDF
-
None
September 2014
Working Paper Number:
CES-14-35
This paper presents a novel empirical study of innovation practices of U.S. companies and their relation to productivity levels using new business micro data from the Business Research and Development and Innovation Survey (BRDIS) for the years 2008-2011. We use factor analysis to reduce a set of inputs and outputs of innovation activities into four latent unobserved innovation modes or practices. Companies are grouped according to their scores across the four factors to see that in large, small and medium companies more than one mode of innovation practices prevails. The next step in the analysis links different types of innovation practices to levels of productivity using regression analysis. The innovation modes have a statistically significant positive relation with the level of productivity. The paper demonstrates the possibility of taking into account the multidimensionality of innovation without the use of composite indicators.
View Full
Paper PDF
-
Measuring U.S. Innovative Activity
March 2007
Working Paper Number:
CES-07-11
Innovation has long been credited as a leading source of economic strength and vitality in the United States because it leads to new goods and services and increases productivity, leading to better living standards. Better measures of innovative activities'activities including but not limited to innovation alone'could improve what we know about the sources of productivity and economic growth. The U.S. Census Bureau either currently collects, or has collected, data on some measures of innovative activities, such as the diffusion of innovations and technologies, human and organizational capital, entrepreneurship and other worker and firm characteristics, and the entry and exit of businesses, that research shows affect productivity and other measures of economic performance. But developing an understanding of how those effects work requires more than just measures of innovative activity. It also requires solid statistical information about core measures of the economy: that is, comprehensive coverage of all industries, including improved measures of output and sales and additional information on inputs and purchased materials at the micro (enterprise) level for the same economic unit over time (so the effects can be measured). Filling gaps in core data would allow us to rule out the possibility that a measure of innovative activity merely proxies for something that is omitted from or measured poorly in the core data, provide more information about innovative activities, and strengthen our ability to evaluate the performance of the entire economy. These gaps can be filled by better integrating existing data and by more structured collections of new data.
View Full
Paper PDF