-
Where to Build Affordable Housing?
Evaluating the Tradeoffs of Location
December 2023
Working Paper Number:
CES-23-62R
How does the location of affordable housing affect tenant welfare, the distribution of assistance, and broader societal objectives such as racial integration? Using administrative data on tenants of units funded by the Low-Income Housing Tax Credit (LIHTC), we first show that characteristics such as race and proxies for need vary widely across neighborhoods. Despite fixed eligibility requirements, LIHTC developments in more opportunity-rich neighborhoods house tenants who are higher income, more educated, and far less likely to be Black. To quantify the welfare implications, we build a residential choice model in which households choose from both market-rate and affordable housing options, where the latter must be rationed. While building affordable housing in higher-opportunity neighborhoods costs more, it also increases household welfare and reduces city-wide segregation. The gains in household welfare, however, accrue to more moderate-need, non-Black/Hispanic households at the expense of other households. This change in the distribution of assistance is primarily due to a 'crowding out' effect: households that only apply for assistance in higher-opportunity neighborhoods crowd out those willing to apply regardless of location. Finally, other policy levers'such as lowering the income limits used for means-testing'have only limited effects relative to the choice of location.
View Full
Paper PDF
-
Producing U.S. Population Statistics Using Multiple Administrative Sources
November 2023
Working Paper Number:
CES-23-58
We identify several challenges encountered when constructing U.S. administrative record-based (AR-based) population estimates for 2020. Though the AR estimates are higher than the 2020 Census at the national level, they are over 15 percent lower in 5 percent of counties, suggesting that locational accuracy can be improved. Other challenges include how to achieve comprehensive coverage, maintain consistent coverage across time, filter out nonresidents and people not alive on the reference date, uncover missing links across person and address records, and predict demographic characteristics when multiple ones are reported or when they are missing. We discuss several ways of addressing these issues, e.g., building in redundancy with more sources, linking children to their parents' addresses, and conducting additional record linkage for people without Social Security Numbers and for addresses not initially linked to the Census Bureau's Master Address File. We discuss modeling to predict lower levels of geography for people lacking those geocodes, the probability that a person is a U.S. resident on the reference date, the probability that an address is the person's residence on the reference date, and the probability a person is in each demographic characteristic category. Regression results illustrate how many of these challenges and solutions affect the AR county population estimates.
View Full
Paper PDF
-
Patents, Innovation, and Market Entry
September 2023
Working Paper Number:
CES-23-45
Do patents facilitate market entry and job creation? Using a 2014 Supreme Court decision that limited patent eligibility and natural language processing methods to identify invalid patents, I find that large treated firms reduce job creation and create fewer new establishments in response, with no effect on new firm entry. Moreover, companies shift toward innovation aimed at improving existing products consistent with the view that patents incentivize creative destruction.
View Full
Paper PDF
-
Eviction and Poverty in American Cities
July 2023
Working Paper Number:
CES-23-37
More than two million U.S. households have an eviction case filed against them each year.
Policymakers at the federal, state, and local levels are increasingly pursuing policies to reduce the number of evictions, citing harm to tenants and high public expenditures related to homelessness. We study the consequences of eviction for tenants using newly linked administrative data from two major urban areas: Cook County (which includes Chicago) and New York City. We document that prior to housing court, tenants experience declines in earnings and employment and increases in financial distress and hospital visits. These pre-trends pose a challenge for disentangling correlation and causation. To address this problem, we use an instrumental variables approach based on cases randomly assigned to judges of varying leniency. We find that an eviction order increases homelessness and hospital visits and reduces earnings, durable goods consumption, and access to credit in the first two years. Effects on housing and labor market outcomes are driven by impacts for female and Black tenants. In the longer-run, eviction increases indebtedness and reduces credit scores.
View Full
Paper PDF
-
Estimating the U.S. Citizen Voting-Age Population (CVAP) Using Blended Survey Data, Administrative Record Data, and Modeling: Technical Report
April 2023
Authors:
J. David Brown,
Danielle H. Sandler,
Lawrence Warren,
Moises Yi,
Misty L. Heggeness,
Joseph L. Schafer,
Matthew Spence,
Marta Murray-Close,
Carl Lieberman,
Genevieve Denoeux,
Lauren Medina
Working Paper Number:
CES-23-21
This report develops a method using administrative records (AR) to fill in responses for nonresponding American Community Survey (ACS) housing units rather than adjusting survey weights to account for selection of a subset of nonresponding housing units for follow-up interviews and for nonresponse bias. The method also inserts AR and modeling in place of edits and imputations for ACS survey citizenship item nonresponses. We produce Citizen Voting-Age Population (CVAP) tabulations using this enhanced CVAP method and compare them to published estimates. The enhanced CVAP method produces a 0.74 percentage point lower citizen share, and it is 3.05 percentage points lower for voting-age Hispanics. The latter result can be partly explained by omissions of voting-age Hispanic noncitizens with unknown legal status from ACS household responses. Weight adjustments may be less effective at addressing nonresponse bias under those conditions.
View Full
Paper PDF
-
Full Report of the Comparisons of Administrative Record Rosters to Census Self-Responses and NRFU Household Member Responses
March 2023
Working Paper Number:
CES-23-08
One of the U.S. Census Bureau's innovations in the 2020 U.S. Census was the use of administrative records (AR) to create household rosters for enumerating some addresses when a self response was not available but high-quality ARs were. The goal was to reduce the cost of fieldwork during the Nonresponse Followup operation (NRFU). The original plan had NRFU beginning in mid-May and continuing through late July 2020. However, the COVID-19 pandemic forced the delay of NRFU and caused the Internal Revenue Service to postpone the income tax filing deadline, resulting in an interruption in the delivery of ARs to the U.S. Census Bureau. The delays were not anticipated when U.S. Census Bureau staff conducted the research on AR enumeration with the 2010 Census data in preparation for the 2020 Census or during the fine tuning of plans for using ARs during the 2018 End-to-End Census Test. These circumstances raised questions about whether the quality of the AR household rosters was high enough for use in enumeration. To aid in investigating the concern about the quality of the AR rosters, our analyses compared AR rosters to self-response rosters and NRFU household member responses at addresses where both ARs and a self-response were available.
View Full
Paper PDF
-
National Experimental Wellbeing Statistics - Version 1
February 2023
Working Paper Number:
CES-23-04
This is the U.S. Census Bureau's first release of the National Experimental Wellbeing Statistics (NEWS) project. The NEWS project aims to produce the best possible estimates of income and poverty given all available survey and administrative data. We link survey, decennial census, administrative, and third-party data to address measurement error in income and poverty statistics. We estimate improved (pre-tax money) income and poverty statistics for 2018 by addressing several possible sources of bias documented in prior research. We address biases from 1) unit nonresponse through improved weights, 2) missing income information in both survey and administrative data through improved imputation, and 3) misreporting by combining or replacing survey responses with administrative information. Reducing survey error substantially affects key measures of well-being: We estimate median household income is 6.3 percent higher than in survey estimates, and poverty is 1.1 percentage points lower. These changes are driven by subpopulations for which survey error is particularly relevant. For house holders aged 65 and over, median household income is 27.3 percent higher and poverty is 3.3 percentage points lower than in survey estimates. We do not find a significant impact on median household income for householders under 65 or on child poverty. Finally, we discuss plans for future releases: addressing other potential sources of bias, releasing additional years of statistics, extending the income concepts measured, and including smaller geographies such as state and county.
View Full
Paper PDF
-
Multinational Firms in the U.S. Economy: Insights from Newly Integrated Microdata
September 2022
Working Paper Number:
CES-22-39
This paper describes the construction of two confidential crosswalk files enabling a comprehensive identification of multinational rms in the U.S. economy. The effort combines firm-level surveys on direct investment conducted by the U.S. Bureau of Economic Analysis (BEA) and the U.S. Census Bureau's Business Register (BR) spanning the universe of employer businesses from 1997 to 2017. First, the parent crosswalk links BEA firm-level surveys on U.S. direct investment abroad and the BR. Second, the affiliate crosswalk links BEA firm-level surveys on foreign direct investment in the United States and the BR. Using these newly available links, we distinguish between U.S.- and foreign-owned multinational firms and describe their prevalence and economic activities in the national economy, by sector, and by geography.
View Full
Paper PDF
-
The Color of Money: Federal vs. Industry Funding of University Research
September 2021
Working Paper Number:
CES-21-26
U.S. universities, which are important producers of new knowledge, have experienced a shift in research funding away from federal and towards private industry sources. This paper compares the effects of federal and private university research funding, using data from 22 universities that include individual-level payments for everyone employed on all grants for each university year and that are linked to patent and Census data, including IRS W-2 records. We instrument for an individual's source of funding with government-wide R&D expenditure shocks within a narrow field of study. We find that a higher share of federal funding causes fewer but more general patents, more high-tech entrepreneurship, a higher likelihood of remaining employed in academia, and a lower likelihood of joining an incumbent firm. Increasing the private share of funding has opposite effects for most outcomes. It appears that private funding leads to greater appropriation of intellectual property by incumbent firms.
View Full
Paper PDF
-
Business-Level Expectations and Uncertainty
December 2020
Working Paper Number:
CES-20-41
The Census Bureau's 2015 Management and Organizational Practices Survey (MOPS) utilized innovative methodology to collect five-point forecast distributions over own future shipments, employment, and capital and materials expenditures for 35,000 U.S. manufacturing plants. First and second moments of these plant-level forecast distributions covary strongly with first and second moments, respectively, of historical outcomes. The first moment of the distribution provides a measure of business' expectations for future outcomes, while the second moment provides a measure of business' subjective uncertainty over those outcomes. This subjective uncertainty measure correlates positively with financial risk measures. Drawing on the Annual Survey of Manufactures and the Census of Manufactures for the corresponding realizations, we find that subjective expectations are highly predictive of actual outcomes and, in fact, more predictive than statistical models fit to historical data. When respondents express greater subjective uncertainty about future outcomes at their plants, their forecasts are less accurate. However, managers supply overly precise forecast distributions in that implied confidence intervals for sales growth rates are much narrower than the distribution of actual outcomes. Finally, we develop evidence that greater use of predictive computing and structured management practices at the plant and a more decentralized decision-making process (across plants in the same firm) are associated with better forecast accuracy.
View Full
Paper PDF