CREAT: Census Research Exploration and Analysis Tool

Investigating the Effect of Innovation Activities of Firms on Innovation Performance: Does Firm Size Matter?

January 2025

Working Paper Number:

CES-25-04

Abstract

Understanding the relationship between a firm's innovation activities and its performance has been of great interest to management scholars. While the literature on innovation activities is vast, there is a dearth of studies investigating the effect of key innovation activities of the firm on innovation outcomes in a single study, and whether their effects are dependent on the nature of firms, specifically firm size. Drawing from a longitudinal dataset from the Business Research & Development and Innovation Survey (BRDIS), and informed by contingency theory and resource orchestration theory, we examine the relationship between a firm's innovation activities - including its Research & Development (R&D) investment, securing patents, collaborative R&D, R&D toward new business areas, and grants for R&D - and its product innovation and process innovation. We also investigate whether these relationships are contingent on firm size. Consistent with contingency theory, we find a significant difference between large firms and small firms regarding how they enhance product innovation and process innovation. Large firms can improve product innovation by securing patents through applications and issuances, coupled with active participation in collaborative R&D efforts. Conversely, smaller firms concentrate their efforts on the number of patents applied for, directing R&D efforts toward new business areas, and often leveraging grants for R&D efforts. To achieve process innovation, a similar dichotomy emerges. Larger firms demonstrate a commitment to securing patents, engage in R&D efforts tailored to new business areas, and actively collaborate with external entities on R&D efforts. In contrast, smaller firms primarily focus on securing patents and channel their R&D efforts toward new business pursuits. This nuanced exploration highlights the varied strategies employed by large and small firms in navigating the intricate landscape of both product and process innovation. The results shed light on specific innovation activities as antecedents of innovation outcomes and demonstrate how the effectiveness of such assets is contingent upon firm size.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
investment, researcher, company, growth, technological, product, research, organizational, acquisition, strategic, innovation, development, patent, innovate, patenting, partnership, developed, innovative, innovating, firm innovation

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Small Business Administration, National Science Foundation, North American Industry Classification System, Technical Services, Duke University, Disclosure Review Board, Business R&D and Innovation Survey, Business Research and Development and Innovation Survey, Social Science Research Institute, Federal Statistical Research Data Center

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Investigating the Effect of Innovation Activities of Firms on Innovation Performance: Does Firm Size Matter?' are listed below in order of similarity.