It is more than 25 years since the authors of the Yale and Carnegie surveys studied how firms seek to protect the rents from innovation. In this paper, we revisit that question using a nationally representative sample of firms over the period 2008-2015, with the goal of updating and extending a set of stylized facts that has been influential for our understanding of the economics of innovation. There are five main findings. First, while patenting firms are relatively uncommon in the economy, they account for an overwhelming share of R&D spending. Second, utility patents are considered less important than other forms of IP protection, like trade secrets, trademarks, and copyrights. Third, industry differences explain a great deal of the level of firms' engagement with IP, with high-tech firms on average being more active on all forms of IP. Fourth, we do not find any significant difference in the use of IP strategies across firms at different points of their life cycle. Lastly, unlike age, firms of different size appear to manage IP significantly differently. On average, larger firms tend to engage much more extensively in the protection of IP, and this pattern cannot be easily explained by differences in the type of R&D or innovation produced by a firm. We also discuss the implications of these findings for innovation research and policy.
-
Characteristics of the Top R&D Performing Firms in the U.S.: Evidence from the Survey of Industrial R&D
September 2010
Working Paper Number:
CES-10-33
Innovation drives economic growth and productivity growth, and as such, indicators of innovative activity such as research and development (R&D) expenditures are of paramount importance. We combine Census confidential microdata from two sources in order to examine the characteristics of the top R&D performing firms in the U.S. economy. We use the Survey of Industrial Research and Development (SIRD) to identify the top 200 R&D performing firms in 2003 and, to the extent possible, to trace the evolution of these firms from 1957 to 2007. The Longitudinal Business Database (LBD) further extends our knowledge about these firms and enables us to make comparisons to the U.S. economy. By linking the SIRD and the LBD we are able to create a detailed portrait of the evolution of the top R&D performing firms in the U.S.
View Full
Paper PDF
-
R&D or R vs. D?
Firm Innovation Strategy and Equity Ownership
April 2020
Working Paper Number:
CES-20-14
We analyze a unique dataset that separately reports research and development expenditures
for a large panel of public and private firms. Definitions of 'research' and 'development' in this dataset, respectively, correspond to definitions of knowledge 'exploration' and 'exploitation' in the innovation theory literature. We can thus test theories of how equity ownership status relates to innovation strategy. We find that public firms have greater research intensity than private firms, inconsistent with theories asserting private ownership is more conducive to exploration. We also find public firms invest more intensely in innovation of all sorts. These results suggest relaxed financing constraints enjoyed by public firms, as well as their diversified shareholder bases, make them more conducive to investing in all types of innovation. Reconciling several seemingly conflicting results in prior research, we find private-equity-owned firms, though not less innovative overall than other private firms, skew their innovation strategies toward development and away from research.
View Full
Paper PDF
-
A Portrait of Firms that Invest in R&D
January 2016
Working Paper Number:
CES-16-41
We focus on the evolution and behavior of firms that invest in research and development (R&D). We build upon the cross-sectional analysis in Foster and Grim (2010) that identified the characteristics of top R&D spending firms and follow up by charting the behavior of these firms over time. Our focus is dynamic in nature as we merge micro-level cross-sectional data from the Survey of Industrial Research and Development (SIRD) and the Business Research & Development and Innovation Survey (BRDIS) with the Longitudinal Business Database (LBD). The result is a panel firm-level data set from 1992 to 2011 that tracks firms' performances as they enter and exit the R&D surveys. Using R&D expenditures to proxy R&D performance, we find the top R&D performing firms in the U.S. across all years to be large, old, multinational enterprises. However, we also find that the composition of R&D performing firms is gradually shifting more towards smaller domestic firms with expenditures being less sensitive to scale effects. We find a high degree of persistence for these firms over time. We chart the history of R&D performing firms and compare them to all firms in the economy and find substantial differences in terms of age, size, firm structure and international activity; these differences persist when looking at future firm outcomes.
View Full
Paper PDF
-
Investigating the Effect of Innovation Activities of Firms on Innovation Performance: Does Firm Size Matter?
January 2025
Working Paper Number:
CES-25-04
Understanding the relationship between a firm's innovation activities and its performance has been of great interest to management scholars. While the literature on innovation activities is vast, there is a dearth of studies investigating the effect of key innovation activities of the firm on innovation outcomes in a single study, and whether their effects are dependent on the nature of firms, specifically firm size. Drawing from a longitudinal dataset from the Business Research & Development and Innovation Survey (BRDIS), and informed by contingency theory and resource orchestration theory, we examine the relationship between a firm's innovation activities - including its Research & Development (R&D) investment, securing patents, collaborative R&D, R&D toward new business areas, and grants for R&D - and its product innovation and process innovation. We also investigate whether these relationships are contingent on firm size. Consistent with contingency theory, we find a significant difference between large firms and small firms regarding how they enhance product innovation and process innovation. Large firms can improve product innovation by securing patents through applications and issuances, coupled with active participation in collaborative R&D efforts. Conversely, smaller firms concentrate their efforts on the number of patents applied for, directing R&D efforts toward new business areas, and often leveraging grants for R&D efforts. To achieve process innovation, a similar dichotomy emerges. Larger firms demonstrate a commitment to securing patents, engage in R&D efforts tailored to new business areas, and actively collaborate with external entities on R&D efforts. In contrast, smaller firms primarily focus on securing patents and channel their R&D efforts toward new business pursuits. This nuanced exploration highlights the varied strategies employed by large and small firms in navigating the intricate landscape of both product and process innovation. The results shed light on specific innovation activities as antecedents of innovation outcomes and demonstrate how the effectiveness of such assets is contingent upon firm size.
View Full
Paper PDF
-
The Intangible Divide: Why Do So Few Firms Invest in Innovation?
February 2025
Working Paper Number:
CES-25-15
Investments in software, R&D, and advertising have surged, nearing half of U.S. private nonresidential investment. Yet just a few hundred firms dominate this growth. Most firms, including large ones, regularly invest little in capitalized software and R&D, widening this 'intangible divide' despite falling intangible prices. Using comprehensive US Census microdata, we document these patterns and explore factors associated with intangible investment. We find that firms invest significantly less in innovation-related intangibles when their rivals invest more. One firm's investment can obsolesce rivals' investments, reducing returns. This negative pecuniary externality worsens the intangible divide, potentially leading to significant misallocation.
View Full
Paper PDF
-
INNOVATION OUTPUT CHOICES AND CHARACTERISTICS OF FIRMS IN THE U.S.
October 2014
Working Paper Number:
CES-14-42
This paper uses new business micro data from the Business Research and Development and Innovation Survey (BRDIS) for the years 2008-2011 to relate the discrete innovation choices made by U.S. companies to features of the company that have long been considered to be important correlates of innovation. We use multinomial logit to model those choices. Bloch and Lopez-Bassols (2009) used the Community Innovation Surveys (CIS) to classify companies according dual, technological or output-based innovation constructs. We found that for each of those constructs of innovation combinations considered, manufacturing and engaging in intellectual property transfer increase the odds of choosing innovation strategies that involve more than one type of categories (for example, both goods and services, or both tech and non-tech) and radical innovations, controlling form size, productivity, time and type of R&D. Company size and company productivity as well as time do not lean the choices in any particular direction. These associations are robust across the three multinomial choice models that we have considered. In contrast with other studies, we have been able to use companies that do and companies that do not innovate, and this has allowed to rule out to some extent selectivity bias.
View Full
Paper PDF
-
Advanced Technologies Adoption and Use by U.S. Firms: Evidence from the Annual Business Survey
December 2020
Working Paper Number:
CES-20-40
We introduce a new survey module intended to complement and expand research on the causes and consequences of advanced technology adoption. The 2018 Annual Business Survey (ABS), conducted by the Census Bureau in partnership with the National Center for Science and Engineering Statistics (NCSES), provides comprehensive and timely information on the diffusion among U.S. firms of advanced technologies including artificial intelligence (AI), cloud computing, robotics, and the digitization of business information. The 2018 ABS is a large, nationally representative sample of over 850,000 firms covering all private, nonfarm sectors of the economy. We describe the motivation for and development of the technology module in the ABS, as well as provide a first look at technology adoption and use patterns across firms and sectors. We find that digitization is quite widespread, as is some use of cloud computing. In contrast, advanced technology adoption is rare and generally skewed towards larger and older firms. Adoption patterns are consistent with a hierarchy of increasing technological sophistication, in which most firms that adopt AI or other advanced business technologies also use the other, more widely diffused technologies. Finally, while few firms are at the technology frontier, they tend to be large so technology exposure of the average worker is significantly higher. This new data will be available to qualified researchers on approved projects in the Federal Statistical Research Data Center network.
View Full
Paper PDF
-
IMMIGRANT ENTREPRENEURS AND INNOVATION IN THE U.S. HIGH-TECH SECTOR
February 2019
Working Paper Number:
CES-19-06
We estimate differences in innovation behavior between foreign versus U.S.-born entrepreneurs in high-tech industries. Our data come from the Annual Survey of Entrepreneurs, a random sample of firms with detailed information on owner characteristics and innovation activities. We find uniformly higher rates of innovation in immigrant-owned firms for 15 of 16 different innovation measures; the only exception is for copyright/trademark. The immigrant advantage holds for older firms as well as for recent start-ups and for every level of the entrepreneur's education. The size of the estimated immigrant-native differences in product and process innovation activities rises with detailed controls for demographic and human capital characteristics but falls for R&D and patenting. Controlling for finance, motivations, and industry reduces all coefficients, but for most measures and specifications immigrants are estimated to have a sizable advantage in innovation.
View Full
Paper PDF
-
Automation and the Workforce: A Firm-Level View from the 2019 Annual Business Survey
April 2022
Authors:
John Haltiwanger,
Lucia Foster,
Emin Dinlersoz,
Nikolas Zolas,
Daron Acemoglu,
Catherine Buffington,
Nathan Goldschlag,
Zachary Kroff,
David Beede,
Gary Anderson,
Eric Childress,
Pascual Restrepo
Working Paper Number:
CES-22-12R
This paper describes the adoption of automation technologies by US firms across all economic sectors by leveraging a new module introduced in the 2019 Annual Business Survey, conducted by the US Census Bureau in partnership with the National Center for Science and Engineering Statistics (NCSES). The module collects data from over 300,000 firms on the use of five advanced technologies: AI, robotics, dedicated equipment, specialized software, and cloud computing. The adoption of these technologies remains low (especially for AI and robotics), varies substantially across industries, and concentrates on large and young firms. However, because larger firms are much more likely to adopt them, 12-64% of US workers and 22-72% of manufacturing workers are exposed to these technologies. Firms report a variety of motivations for adoption, including automating tasks previously performed by labor. Consistent with the use of these technologies for automation, adopters have higher labor productivity and lower labor shares. In particular, the use of these technologies is associated with a 11.4% higher labor productivity, which accounts for 20'30% of the difference in labor productivity between large firms and the median firm in an industry. Adopters report that these technologies raised skill requirements and led to greater demand for skilled labor, but brought limited or ambiguous effects to their employment levels.
View Full
Paper PDF