Given rising nonresponse rates and concerns about respondent burden, government statistical agencies have been exploring ways to supplement household survey data collection with administrative records and other sources of third-party data. This paper evaluates the potential of property tax assessment records to improve housing surveys by comparing these records to responses from the 2019 American Housing Survey. Leveraging the U.S. Census Bureau's linkage infrastructure, we compute the fraction of AHS housing units that could be matched to a unique property parcel (coverage rate), as well as the extent to which survey and property tax data contain the same information (agreement rate). We analyze heterogeneity in coverage and agreement across states, housing characteristics, and 11 AHS items of interest to housing researchers. Our results suggest that partial replacement of AHS data with property data, targeted toward certain survey items or single-family detached homes, could reduce respondent burden without altering data quality. Further research into partial-replacement designs is needed and should proceed on an item-by-item basis. Our work can guide this research as well as those who wish to conduct independent research with property tax records that is representative of the U.S. housing stock.
-
Comparison of Survey, Federal, and Commercial Address Data Quality
June 2014
Working Paper Number:
carra-2014-06
This report summarizes matching of survey, commercial, and administrative records housing units to the Census Bureau Master Address File (MAF). We document overall MAF match rates in each data set and evaluate differences in match rates across a variety of housing characteristics. Results show that over 90 percent of records in survey data from the American Housing Survey (AHS) match to the MAF. Commercial data from CoreLogic matches at much lower rates, in part due to missing address information and poor match rates for multi-unit buildings. MAF match rates for administrative records from the Department of Housing and Urban Development are also high, and open the possibility of using this information in surveys such as the AHS.
View Full
Paper PDF
-
Matching Addresses between Household Surveys and Commercial Data
July 2015
Working Paper Number:
carra-2015-04
Matching third-party data sources to household surveys can benefit household surveys in a number of ways, but the utility of these new data sources depends critically on our ability to link units between data sets. To understand this better, this report discusses potential modifications to the existing match process that could potentially improve our matches. While many changes to the matching procedure produce marginal improvements in match rates, substantial increases in match rates can only be achieved by relaxing the definition of a successful match. In the end, the results show that the most important factor determining the success of matching procedures is the quality and composition of the data sets being matched.
View Full
Paper PDF
-
Incorporating Administrative Data in Survey Weights for the 2018-2022 Survey of Income and Program Participation
October 2024
Working Paper Number:
CES-24-58
Response rates to the Survey of Income and Program Participation (SIPP) have declined over time, raising the potential for nonresponse bias in survey estimates. A potential solution is to leverage administrative data from government agencies and third-party data providers when constructing survey weights. In this paper, we modify various parts of the SIPP weighting algorithm to incorporate such data. We create these new weights for the 2018 through 2022 SIPP panels and examine how the new weights affect survey estimates. Our results show that before weighting adjustments, SIPP respondents in these panels have higher socioeconomic status than the general population. Existing weighting procedures reduce many of these differences. Comparing SIPP estimates between the production weights and the administrative data-based weights yields changes that are not uniform across the joint income and program participation distribution. Unlike other Census Bureau household surveys, there is no large increase in nonresponse bias in SIPP due to the COVID-19 Pandemic. In summary, the magnitude and sign of nonresponse bias in SIPP is complicated, and the existing weighting procedures may change the sign of nonresponse bias for households with certain incomes and program benefit statuses.
View Full
Paper PDF
-
Exploring Administrative Records Use for Race and Hispanic Origin Item Non-Response
December 2014
Working Paper Number:
carra-2014-16
Race and Hispanic origin data are required to produce official statistics in the United States. Data collected through the American Community Survey and decennial census address missing data through traditional imputation methods, often relying on information from neighbors. These methods work well if neighbors share similar characteristics, however, the shape and patterns of neighborhoods in the United States are changing. Administrative records may provide more accurate data compared to traditional imputation methods for missing race and Hispanic origin responses. This paper first describes the characteristics of persons with missing demographic data, then assesses the coverage of administrative records data for respondents who do not answer race and Hispanic origin questions in Census data. The paper also discusses the distributional impact of using administrative records race and Hispanic origin data to complete missing responses in a decennial census or survey context.
View Full
Paper PDF
-
Correctional Facility and Inmate Locations: Urban and Rural Status Patterns
July 2017
Working Paper Number:
carra-2017-08
As the incarcerated population grew from the 1980s through the late 2000s, so too did the number of correctional facilities. An increasing number of these facilities have been constructed in rural areas. While research has shown there has been growth in prisons and prisoners in rural areas, there are no recent national-level statistics regarding the urban-rural status of correctional facilities and inmates, the urban-rural status of inmates prior to prison, or an accounting of how many inmates from urban or rural areas are incarcerated in urban and rural facilities. Using 2010 decennial census and Bureau of Justice Statistics' 2004 Survey of Prison Inmates data we describe these patterns. We find that a disproportionate share of prisons and inmates are located in rural areas, while a disproportionate share of inmates are from urban areas. Our research could inform discussions about the potential consequences of Census Bureau residence criteria for inmates.
View Full
Paper PDF
-
Evaluating the Use of Commercial Data to Improve Survey Estimates of Property Taxes
August 2016
Working Paper Number:
carra-2016-06
While commercial data sources offer promise to statistical agencies for use in production of official statistics, challenges can arise as the data are not collected for statistical purposes. This paper evaluates the use of 2008-2010 property tax data from CoreLogic, Inc. (CoreLogic), aggregated from county and township governments from around the country, to improve 2010 American Community Survey (ACS) estimates of property tax amounts for single-family homes. Particularly, the research evaluates the potential to use CoreLogic to reduce respondent burden, to study survey response error and to improve adjustments for survey nonresponse. The research found that the coverage of the CoreLogic data varies between counties as does the correspondence between ACS and CoreLogic property taxes. This geographic variation implies that different approaches toward using CoreLogic are needed in different areas of the country. Further, large differences between CoreLogic and ACS property taxes in certain counties seem to be due to conceptual differences between what is collected in the two data sources. The research examines three counties, Clark County, NV, Philadelphia County, PA and St. Louis County, MO, and compares how estimates would change with different approaches using the CoreLogic data. Mean county property tax estimates are highly sensitive to whether ACS or CoreLogic data are used to construct estimates. Using CoreLogic data in imputation modeling for nonresponse adjustment of ACS estimates modestly improves the predictive power of imputation models, although estimates of county property taxes and property taxes by mortgage status are not very sensitive to the imputation method.
View Full
Paper PDF
-
The Design of Sampling Strata for the National Household Food Acquisition and Purchase Survey
February 2025
Working Paper Number:
CES-25-13
The National Household Food Acquisition and Purchase Survey (FoodAPS), sponsored by the United States Department of Agriculture's (USDA) Economic Research Service (ERS) and Food and Nutrition Service (FNS), examines the food purchasing behavior of various subgroups of the U.S. population. These subgroups include participants in the Supplemental Nutrition Assistance Program (SNAP) and the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC), as well as households who are eligible for but don't participate in these programs. Participants in these social protection programs constitute small proportions of the U.S. population; obtaining an adequate number of such participants in a survey would be challenging absent stratified sampling to target SNAP and WIC participating households. This document describes how the U.S. Census Bureau (which is planning to conduct future versions of the FoodAPS survey on behalf of USDA) created sampling strata to flag the FoodAPS targeted subpopulations using machine learning applications in linked survey and administrative data. We describe the data, modeling techniques, and how well the sampling flags target low-income households and households receiving WIC and SNAP benefits. We additionally situate these efforts in the nascent literature on the use of big data and machine learning for the improvement of survey efficiency.
View Full
Paper PDF
-
2010 American Community Survey Match Study
July 2014
Working Paper Number:
carra-2014-03
Using administrative records data from federal government agencies and commercial sources, the 2010 ACS Match Study measures administrative records coverage of 2010 ACS addresses, persons, and persons at addresses at different levels of geography as well as by demographic characteristics and response mode. The 2010 ACS Match Study represents a continuation of the research undertaken in the 2010 Census Match Study, the first national-level evaluation of administrative records data coverage. Preliminary results indicate that administrative records provide substantial coverage for addresses and persons in the 2010 ACS (92.7 and 92.1 percent respectively), and less extensive though substantial coverage, for person-address pairs (74.3 percent). In addition, some variation in address, person and/or person-address coverage is found across demographic and response mode groups. This research informs future uses of administrative records in survey and decennial census operations to address the increasing costs of data collection and declining response rates.
View Full
Paper PDF
-
Producing U.S. Population Statistics Using Multiple Administrative Sources
November 2023
Working Paper Number:
CES-23-58
We identify several challenges encountered when constructing U.S. administrative record-based (AR-based) population estimates for 2020. Though the AR estimates are higher than the 2020 Census at the national level, they are over 15 percent lower in 5 percent of counties, suggesting that locational accuracy can be improved. Other challenges include how to achieve comprehensive coverage, maintain consistent coverage across time, filter out nonresidents and people not alive on the reference date, uncover missing links across person and address records, and predict demographic characteristics when multiple ones are reported or when they are missing. We discuss several ways of addressing these issues, e.g., building in redundancy with more sources, linking children to their parents' addresses, and conducting additional record linkage for people without Social Security Numbers and for addresses not initially linked to the Census Bureau's Master Address File. We discuss modeling to predict lower levels of geography for people lacking those geocodes, the probability that a person is a U.S. resident on the reference date, the probability that an address is the person's residence on the reference date, and the probability a person is in each demographic characteristic category. Regression results illustrate how many of these challenges and solutions affect the AR county population estimates.
View Full
Paper PDF
-
Estimating the U.S. Citizen Voting-Age Population (CVAP) Using Blended Survey Data, Administrative Record Data, and Modeling: Technical Report
April 2023
Authors:
J. David Brown,
Danielle H. Sandler,
Lawrence Warren,
Moises Yi,
Misty L. Heggeness,
Joseph L. Schafer,
Matthew Spence,
Marta Murray-Close,
Carl Lieberman,
Genevieve Denoeux,
Lauren Medina
Working Paper Number:
CES-23-21
This report develops a method using administrative records (AR) to fill in responses for nonresponding American Community Survey (ACS) housing units rather than adjusting survey weights to account for selection of a subset of nonresponding housing units for follow-up interviews and for nonresponse bias. The method also inserts AR and modeling in place of edits and imputations for ACS survey citizenship item nonresponses. We produce Citizen Voting-Age Population (CVAP) tabulations using this enhanced CVAP method and compare them to published estimates. The enhanced CVAP method produces a 0.74 percentage point lower citizen share, and it is 3.05 percentage points lower for voting-age Hispanics. The latter result can be partly explained by omissions of voting-age Hispanic noncitizens with unknown legal status from ACS household responses. Weight adjustments may be less effective at addressing nonresponse bias under those conditions.
View Full
Paper PDF