CREAT: Census Research Exploration and Analysis Tool

Papers written by Author(s): 'Marta Murray-Close'

The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
Click here to search again

Frequently Occurring Concepts within this Search

Viewing papers 1 through 5 of 5


  • Working Paper

    Producing U.S. Population Statistics Using Multiple Administrative Sources

    November 2023

    Working Paper Number:

    CES-23-58

    We identify several challenges encountered when constructing U.S. administrative record-based (AR-based) population estimates for 2020. Though the AR estimates are higher than the 2020 Census at the national level, they are over 15 percent lower in 5 percent of counties, suggesting that locational accuracy can be improved. Other challenges include how to achieve comprehensive coverage, maintain consistent coverage across time, filter out nonresidents and people not alive on the reference date, uncover missing links across person and address records, and predict demographic characteristics when multiple ones are reported or when they are missing. We discuss several ways of addressing these issues, e.g., building in redundancy with more sources, linking children to their parents' addresses, and conducting additional record linkage for people without Social Security Numbers and for addresses not initially linked to the Census Bureau's Master Address File. We discuss modeling to predict lower levels of geography for people lacking those geocodes, the probability that a person is a U.S. resident on the reference date, the probability that an address is the person's residence on the reference date, and the probability a person is in each demographic characteristic category. Regression results illustrate how many of these challenges and solutions affect the AR county population estimates.
    View Full Paper PDF
  • Working Paper

    Noncitizen Coverage and Its Effects on U.S. Population Statistics

    August 2023

    Working Paper Number:

    CES-23-42

    We produce population estimates with the same reference date, April 1, 2020, as the 2020 Census of Population and Housing by combining 31 types of administrative record (AR) and third-party sources, including several new to the Census Bureau with a focus on noncitizens. Our AR census national population estimate is higher than other Census Bureau official estimates: 1.8% greater than the 2020 Demographic Analysis high estimate, 3.0% more than the 2020 Census count, and 3.6% higher than the vintage-2020 Population Estimates Program estimate. Our analysis suggests that inclusion of more noncitizens, especially those with unknown legal status, explains the higher AR census estimate. About 19.8% of AR census noncitizens have addresses that cannot be linked to an address in the 2020 Census collection universe, compared to 5.7% of citizens, raising the possibility that the 2020 Census did not collect data for a significant fraction of noncitizens residing in the United States under the residency criteria used for the census. We show differences in estimates by age, sex, Hispanic origin, geography, and socioeconomic characteristics symptomatic of the differences in noncitizen coverage.
    View Full Paper PDF
  • Working Paper

    Estimating the U.S. Citizen Voting-Age Population (CVAP) Using Blended Survey Data, Administrative Record Data, and Modeling: Technical Report

    April 2023

    Working Paper Number:

    CES-23-21

    This report develops a method using administrative records (AR) to fill in responses for nonresponding American Community Survey (ACS) housing units rather than adjusting survey weights to account for selection of a subset of nonresponding housing units for follow-up interviews and for nonresponse bias. The method also inserts AR and modeling in place of edits and imputations for ACS survey citizenship item nonresponses. We produce Citizen Voting-Age Population (CVAP) tabulations using this enhanced CVAP method and compare them to published estimates. The enhanced CVAP method produces a 0.74 percentage point lower citizen share, and it is 3.05 percentage points lower for voting-age Hispanics. The latter result can be partly explained by omissions of voting-age Hispanic noncitizens with unknown legal status from ACS household responses. Weight adjustments may be less effective at addressing nonresponse bias under those conditions.
    View Full Paper PDF
  • Working Paper

    Race and Mobility in U.S. Marriage Markets: Quantifying the Role of Segregation

    December 2022

    Working Paper Number:

    CES-22-59R

    We examine racial disparities in upward intergenerational mobility of family income by linking American Community Survey respondents born in 1978-87 to their parents' tax records. This linkage facilitates better measurement of marriage-market processes than tax records alone. Relative to White individuals, we document lower upward mobility of partner income for Black, Hispanic, and Asian individuals. These disparities offset Asian women and men's advantages in personal income mobility, overturn Black women's small advantage, and compound Black men's disadvantage. We develop a novel nonparametric decomposition which reveals that these disparities are driven primarily by racial differences in marriage-market opportunities, but also by different partnering rates conditional on opportunities. We then apply a selection-correction methodology to estimate causal effects of childhood exposure to racial segregation. Our design approximates a shift in the current generation's segregation exposure, holding historical exposures constant. This channel generates substantial Black-White intergenerational mobility gaps across all income measures, and we show that these effects cumulate over a multigenerational horizon.
    View Full Paper PDF
  • Working Paper

    An Evaluation of the Gender Wage Gap Using Linked Survey and Administrative Data

    November 2020

    Working Paper Number:

    CES-20-34

    The narrowing of the gender wage gap has slowed in recent decades. However, current estimates show that, among full-time year-round workers, women earn approximately 18 to 20 percent less than men at the median. Women's human capital and labor force characteristics that drive wages increasingly resemble men's, so remaining differences in these characteristics explain less of the gender wage gap now than in the past. As these factors wane in importance, studies show that others like occupational and industrial segregation explain larger portions of the gender wage gap. However, a major limitation of these studies is that the large datasets required to analyze occupation and industry effectively lack measures of labor force experience. This study combines survey and administrative data to analyze and improve estimates of the gender wage gap within detailed occupations, while also accounting for gender differences in work experience. We find a gender wage gap of 18 percent among full-time, year-round workers across 316 detailed occupation categories. We show the wage gap varies significantly by occupation: while wages are at parity in some occupations, gaps are as large as 45 percent in others. More competitive and hazardous occupations, occupations that reward longer hours of work, and those that have a larger proportion of women workers have larger gender wage gaps. The models explain less of the wage gap in occupations with these attributes. Occupational characteristics shape the conditions under which men and women work and we show these characteristics can make for environments that are more or less conducive to gender parity in earnings.
    View Full Paper PDF