The Current Population Survey Annual Social and Economic Supplement (CPS ASEC) is an important source for estimates of the uninsured population. Previous research has shown that survey estimates produce an undercount of beneficiaries compared to Medicaid enrollment records. We extend past work by examining the Medicaid undercount in the 2007-2011 CPS ASEC compared to enrollment data from the Medicaid Statistical Information System for calendar years 2006-2010. By linking individuals across datasets, we analyze two types of response error regarding Medicaid enrollment - false negative error and false positive error. We use regression analysis to identify factors associated with these two types of response error in the 2011 CPS ASEC. We find that the Medicaid undercount was between 22 and 31 percent from 2007 to 2011. In 2011, the false negative rate was 40 percent, and 27 percent of Medicaid reports in CPS ASEC were false positives. False negative error is associated with the duration of enrollment in Medicaid, enrollment in Medicare and private insurance, and Medicaid enrollment in the survey year. False positive error is associated with enrollment in Medicare and shared Medicaid coverage in the household. We discuss implications for survey reports of health insurance coverage and for estimating the uninsured population.
-
Medicare Coverage and Reporting
December 2016
Working Paper Number:
carra-2016-12
Medicare coverage of the older population in the United States is widely recognized as being nearly universal. Recent statistics from the Current Population Survey Annual Social and Economic Supplement (CPS ASEC) indicate that 93 percent of individuals aged 65 and older were covered by Medicare in 2013. Those without Medicare include those who are not eligible for the public health program, though the CPS ASEC estimate may also be impacted by misreporting. Using linked data from the CPS ASEC and Medicare Enrollment Database (i.e., the Medicare administrative data), we estimate the extent to which individuals misreport their Medicare coverage. We focus on those who report having Medicare but are not enrolled (false positives) and those who do not report having Medicare but are enrolled (false negatives). We use regression analyses to evaluate factors associated with both types of misreporting including socioeconomic, demographic, and household characteristics. We then provide estimates of the implied Medicare-covered, insured, and uninsured older population, taking into account misreporting in the CPS ASEC. We find an undercount in the CPS ASEC estimates of the Medicare covered population of 4.5 percent. This misreporting is not random - characteristics associated with misreporting include citizenship status, year of entry, labor force participation, Medicare coverage of others in the household, disability status, and imputation of Medicare responses. When we adjust the CPS ASEC estimates to account for misreporting, Medicare coverage of the population aged 65 and older increases from 93.4 percent to 95.6 percent while the uninsured rate decreases from 1.4 percent to 1.3 percent.
View Full
Paper PDF
-
Reporting of Indian Health Service Coverage in the American Community Survey
May 2018
Working Paper Number:
carra-2018-04
Response error in surveys affects the quality of data which are relied on for numerous research and policy purposes. We use linked survey and administrative records data to examine reporting of a particular item in the American Community Survey (ACS) - health coverage among American Indians and Alaska Natives (AIANs) through the Indian Health Service (IHS). We compare responses to the IHS portion of the 2014 ACS health insurance question to whether or not individuals are in the 2014 IHS Patient Registration data. We evaluate the extent to which individuals misreport their IHS coverage in the ACS as well as the characteristics associated with misreporting. We also assess whether the ACS estimates of AIANs with IHS coverage represent an undercount. Our results will be of interest to researchers who rely on survey responses in general and specifically the ACS health insurance question. Moreover, our analysis contributes to the literature on using administrative records to measure components of survey error.
View Full
Paper PDF
-
Estimating the U.S. Citizen Voting-Age Population (CVAP) Using Blended Survey Data, Administrative Record Data, and Modeling: Technical Report
April 2023
Authors:
J. David Brown,
Danielle H. Sandler,
Lawrence Warren,
Moises Yi,
Misty L. Heggeness,
Joseph L. Schafer,
Matthew Spence,
Marta Murray-Close,
Carl Lieberman,
Genevieve Denoeux,
Lauren Medina
Working Paper Number:
CES-23-21
This report develops a method using administrative records (AR) to fill in responses for nonresponding American Community Survey (ACS) housing units rather than adjusting survey weights to account for selection of a subset of nonresponding housing units for follow-up interviews and for nonresponse bias. The method also inserts AR and modeling in place of edits and imputations for ACS survey citizenship item nonresponses. We produce Citizen Voting-Age Population (CVAP) tabulations using this enhanced CVAP method and compare them to published estimates. The enhanced CVAP method produces a 0.74 percentage point lower citizen share, and it is 3.05 percentage points lower for voting-age Hispanics. The latter result can be partly explained by omissions of voting-age Hispanic noncitizens with unknown legal status from ACS household responses. Weight adjustments may be less effective at addressing nonresponse bias under those conditions.
View Full
Paper PDF
-
Exploring Administrative Records Use for Race and Hispanic Origin Item Non-Response
December 2014
Working Paper Number:
carra-2014-16
Race and Hispanic origin data are required to produce official statistics in the United States. Data collected through the American Community Survey and decennial census address missing data through traditional imputation methods, often relying on information from neighbors. These methods work well if neighbors share similar characteristics, however, the shape and patterns of neighborhoods in the United States are changing. Administrative records may provide more accurate data compared to traditional imputation methods for missing race and Hispanic origin responses. This paper first describes the characteristics of persons with missing demographic data, then assesses the coverage of administrative records data for respondents who do not answer race and Hispanic origin questions in Census data. The paper also discusses the distributional impact of using administrative records race and Hispanic origin data to complete missing responses in a decennial census or survey context.
View Full
Paper PDF
-
Evaluating Race and Hispanic Origin Responses of Medicaid Participants Using Census Data
April 2015
Working Paper Number:
carra-2015-01
Health and health care disparities associated with race or Hispanic origin are complex and continue to challenge researchers and policy makers. With the intention of improving the measurement and monitoring of these disparities, provisions of the Patient Protection and Affordable Care Act (ACA) of 2010 require states to collect, report and analyze data on demographic characteristics of applicants and participants in Medicaid and other federally supported programs. By linking Medicaid records to 2010 Census, American Community Survey, and Census 2000, this new large-scale study examines and documents the extent to which pre-ACA Medicaid administrative records match self-reported race and Hispanic origin in Census data. Linked records allow comparisons between individuals with matching and non-matching race and Hispanic origin data across several demographic, socioeconomic and neighborhood characteristics, such as age, gender, language proficiency, education and Census tract variables. Identification of the groups most likely to have non-matching and missing race and Hispanic origin data in Medicaid relative to Census data can inform strategies to improve the quality of demographic data collected from Medicaid populations.
View Full
Paper PDF
-
The Measurement of Medicaid Coverage in the SIPP: Evidence from California, 1990-1996
September 2002
Working Paper Number:
CES-02-21
This paper studies the accuracy of reported Medicaid coverage in the Survey of Income and Program Participation (SIPP) using a unique data set formed by matching SIPP survey responses to administrative records from the State of California. Overall, we estimate that the SIPP underestimates Medicaid coverage in the California populaton by about 10 percent. Among SIPP respondents who can be matched to administrative records, we estimate that the probability someone reports Medicaid coverage in a month when they are actually covered is around 85 percent. The corresponding probability for low-income children is even higher ' at least 90 percent. These estimates suggest that the SIPP provides reasonably accurate coverage reports for those who are actually in the Medicaid system. On the other hand, our estimate of the false positive rate (the rate of reported coverage for those who are not covered in the administrative records) is relatively high: 2.5 percent for the sample as a whole, and up to 20 percent for poor children. Some of this is due to errors in the recording of Social Security numbers in the administrative system, rather than to problems in the SIPP.
View Full
Paper PDF
-
Coverage and Agreement of Administrative Records and 2010 American Community Survey Demographic Data
November 2014
Working Paper Number:
carra-2014-14
The U.S. Census Bureau is researching possible uses of administrative records in decennial census and survey operations. The 2010 Census Match Study and American Community Survey (ACS) Match Study represent recent efforts by the Census Bureau to evaluate the extent to which administrative records provide data on persons and addresses in the 2010 Census and 2010 ACS. The 2010 Census Match Study also examines demographic response data collected in administrative records. Building on this analysis, we match data from the 2010 ACS to federal administrative records and third party data as well as to previous census data and examine administrative records coverage and agreement of ACS age, sex, race, and Hispanic origin responses. We find high levels of coverage and agreement for sex and age responses and variable coverage and agreement across race and Hispanic origin groups. These results are similar to findings from the 2010 Census Match Study.
View Full
Paper PDF
-
Predicting the Effect of Adding a Citizenship Question to the 2020 Census
June 2019
Working Paper Number:
CES-19-18
The addition of a citizenship question to the 2020 census could affect the self-response rate, a key driver of the cost and quality of a census. We find that citizenship question response patterns in the American Community Survey (ACS) suggest that it is a sensitive question when asked about administrative record noncitizens but not when asked about administrative record citizens. ACS respondents who were administrative record noncitizens in 2017 frequently choose to skip the question or answer that the person is a citizen. We predict the effect on self-response to the entire survey by comparing mail response rates in the 2010 ACS, which included a citizenship question, with those of the 2010 census, which did not have a citizenship question, among households in both surveys. We compare the actual ACS-census difference in response rates for households that may contain noncitizens (more sensitive to the question) with the difference for households containing only U.S. citizens. We estimate that the addition of a citizenship question will have an 8.0 percentage point larger effect on self-response rates in households that may have noncitizens relative to those with only U.S. citizens. Assuming that the citizenship question does not affect unit self-response in all-citizen households and applying the 8.0 percentage point drop to the 28.1 % of housing units potentially having at least one noncitizen would predict an overall 2.2 percentage point drop in self-response in the 2020 census, increasing costs and reducing the quality of the population count.
View Full
Paper PDF
-
Measuring Income of the Aged in Household Surveys: Evidence from Linked Administrative Records
June 2024
Working Paper Number:
CES-24-32
Research has shown that household survey estimates of retirement income (defined benefit pensions and defined contribution account withdrawals) suffer from substantial underreporting which biases downward measures of financial well-being among the aged. Using data from both the redesigned 2016 Current Population Survey Annual Social and Economic Supplement (CPS ASEC) and the Health and Retirement Study (HRS), each matched with administrative records, we examine to what extent underreporting of retirement income affects key statistics such as reliance on Social Security benefits and poverty among the aged. We find that underreporting of retirement income is still prevalent in the CPS ASEC. While the HRS does a better job than the CPS ASEC in terms of capturing retirement income, it still falls considerably short compared to administrative records. Consequently, the relative importance of Social Security income remains overstated in household surveys'53 percent of elderly beneficiaries in the CPS ASEC and 49 percent in the HRS rely on Social Security for the majority of their incomes compared to 42 percent in the linked administrative data. The poverty rate for those aged 65 and over is also overstated'8.8 percent in the CPS ASEC and 7.4 percent in the HRS compared to 6.4 percent in the linked administrative data. Our results illustrate the effects of using alternative data sources in producing key statistics from the Social Security Administration's Income of the Aged publication.
View Full
Paper PDF
-
Coverage of Children in the American Community Survey Based on California Birth Records
September 2023
Working Paper Number:
CES-23-46
The U.S. Census Bureau's American Community Survey (ACS) collects information on individuals and households. The ACS provides survey-based estimates of children drawn from a sample of the U.S. population. However, survey responses may not match administrative records, such as birth records. Birth records should provide a complete account of all births, along with child-parent relationships and demographic characteristics. California is a state that has both a large population of children and a high undercount for young children. This paper uses California as a case study to examine differences between reported versus unreported children in the ACS based on state birth records. Child reporting rates were lower for more recent data years, younger children, for Black and Hispanic mothers, and for more complex households. Child reporting rates were higher for more educated mothers and for households above the poverty line. Using mother's race and Hispanic ethnicity from the birth records combined with poverty indices from the ACS, this analysis also finds that child reporting does not uniformly vary with poverty status across all race and ethnicity groups. This research builds support for the utility of state birth records in analyzing the undercount of children.
View Full
Paper PDF